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PREFACE

This book presents some recent developments and classical methods in Re-
peated Measures involving Mixed Models, Multivariate Analysis of Variance
(MANOVA), and Growth Curves, in particular. Repeated Measures models
and Growth Curves models are in fact special classes of mixed models. A
substantial fraction of applications in Biomedical data analysis, many clinical
trials, and industrial experiments involve observations taken from experimen-
tal units at a number of time points. That is, they involve repeated mea-
surements taken over time. In fact, even in such applications as marketing
research, market analysts need to deal with repeated measurements. For ex-
ample, after a price increase of a product, market analysts do not just analyze
the price e¤ect at one time point, but rather follow the change in consumer
demand of the product over time so that corrective action can be taken if
necessary. Data from such experiments as well as from clinical trials can be
analyzed by alternative methods, especially by methods in MANOVA, Re-
peated Measures, and Growth Curves, depending on the assumptions deemed
appropriate and the objectives of the study. Perhaps due to lack of knowledge
of these methods, sometimes practitioners resort to simpler methods that do
not take the full advantage of the data. It seems that this is mostly due to
inadequate college courses that cover methods in Analysis of Repeated Mea-
surements. Hence, it is the belief of many experts in the area that there is a
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4 PREFACE

great need to promote the extent of teaching, research, and practice of spe-
cialized methods for analysis of repeated measures. This book is intended to
contribute in meeting that need.
As demonstrated in almost all chapters of this book, the classical approach

to solving these problems provides exact solutions to only a fraction of the
problems in this context. Conventional methods alone do not always provide
exact solutions to even some simple problems. For example, in the univariate
Analysis of Variance, the classical approach fails to provide exact tests when
the underlying population variances are unequal. In some widely used Growth
Curves models, there are no exact classical tests even in the case equal vari-
ances. As a result, practitioners often resort to asymptotic results in search of
approximate solutions even when such approximations are known to perform
rather poorly with typical sample sizes. In view of this fact, the book starts
out with an introduction to the generalized inference approach that can help
tackle such problems. In particular, an introduction to the notions of gener-
alized p-values and generalized con�dence intervals and related methods are
presented in Chapter 1. Then, these techniques are applied in each problem
undertaken in the book. It should be emphasized that a practitioner can
utilize results obtained by applying such new notions and concepts with or
without deviating from the conventional philosophy of statistical inference.
Solutions to the statistical problems addressed in this book are presented

as extensions, as opposed to alternatives, to conventional methods of statis-
tical inference. In fact, each class of problems is started with a simple model
under special assumptions that are necessary for the classical approach to
work. After discussing solutions available for such special cases, we will relax
such assumptions when they are considered to be too restrictive or unrea-
sonable in some applications, especially when they are known to have poor
size (Type I error) performance or poor power performance. For example, in
�xed e¤ects ANOVA, the problem is �rst considered under the homoscedastic
variance/covariance assumption and then later we drop the assumption which
is usually made for simplicity and mathematical tractability rather than any-
thing else. According to simulation studies, the equal variances assumption
has been found to be much more serious than the assumption of normality
itself. When the assumption of homoscedasticity is not reasonable, conven-
tional F -tests frequently lead to wrong conclusions and often fail to detect
signi�cant experimental results. In higher-way ANOVA, the drawback be-
comes even more serious in that one can even come to the opposite conclusion
in detecting signi�cant e¤ects. Such lack of power of tests and erroneous
conclusions can result in serious repercussions in practical applications, es-
pecially in biomedical research. In the case of mixed models, some widely
used methods such as MLE-based tests and con�dence intervals on variance
components are now known to have very serious size problems. In each ap-
plication, where variance components are encountered, this book will present
inference procedures that do not su¤er from such false-positive problems.



PREFACE 5

This book is suitable as a textbook on Analysis of Repeated Measures or
as a reference book. The book is useful to teachers, researchers, and exper-
imenters such as those in the agricultural and biomedical �elds. It is also
useful to industrial statisticians and to many other practicing statisticians
including those in Market and Business Research. In the opinion of some
researchers and practitioners of Repeated Measures (RM), many articles and
books on repeated measures and growth curves are di¢ cult to read. Some-
times, even with extensive formulas and equations found in such literature, it
is di¢ cult to �gure out the correct formula for setting up a simple ANOVA
table in RM, perhaps due to experts� assumption that readers are already
familiar with RM ANOVA. Therefore, in view of the fact that courses in RM
are yet to be taught at many colleges, I have taken special care and e¤ort
to try to make this book easy to read, concise, and yet self-contained with
essential formulas. Some of the formulas are presented without formal argu-
ments and derivations, especially when they distract the presentation of an
intuitive result while adding little value to the understanding of the mater-
ial. Nevertheless, some references to the literature providing proofs of such
results are provided. The mathematical level of the book is kept somewhat
low, and some prior knowledge of statistical notions in the analysis of linear
models is assumed. More emphasis is placed on concepts, methods, and ap-
plications rather than on mathematical rigor. For the bene�t of those readers
who might be interested in formal proofs of theorems and further details of
results, a fairly comprehensive set of references is provided.
As a special feature of this book, exact statistical methods are provided

for each application considered in the book, including the problem of com-
paring a number of normal populations. The methods are exact in the sense
that the tests and the con�dence intervals developed in the book are based
on exact probability statements rather than on asymptotic approximations.
This means that inferences based on them can be made with any desired ac-
curacy, provided that assumed parametric model and/or other assumptions
are correct. To make this possible, solutions to problems of testing various
hypotheses considered in this book are presented in terms of p-values. There
is readily available computer software to implement these exact statistical
methods.
All practitioners and researchers of statistical methods can bene�t from

parametric exact methods presented in this book, irrespective of their phi-
losophy and belief, because they are developed as extensions to the classical
methods as opposed to alternatives, thus providing solutions to a wider class
of problems. Practitioners who prefer to carry out tests without new concepts
and notions should also �nd all of the methods presented in the book useful.
This is because exact p-values and con�dence intervals obtained with extended
de�nitions also serve to provide excellent approximate solutions in the classi-
cal sense. According to simulation studies reported in the literature, Type I
error and power performance of these approximations are usually much bet-
ter than the performance of more complicated approximate tests obtained by
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other means. Moreover, unlike some approximations such as those available
on functions of variance components, the approach that one needs to take in
deriving a solution does not change from one situation to another in a class
of similar problems. Therefore, exact signi�cance tests and generalized con�-
dence intervals reported in this book are useful to any practitioner regardless
of whether or not he/she insists on classical �xed level tests and conventional
con�dence intervals.
The book is written with all potential readers in mind. For their bene-

�t, a fairly comprehensive set of formulas is given for all important results
presented in each chapter. A large number of illustrative examples and ex-
ercises is provided for the bene�t of teachers and students. They range from
simple numerical examples to extended versions of methods presented in each
chapter. The exercises given at the end of each chapter are intended to fur-
ther illustrate the concepts and methods covered in the chapter. Some of the
exercises are intended not only to stimulate further thoughts on the mater-
ial covered in the book, but also to stimulate much needed further research
in the context of generalized inference to solve inference problems in more
complicated repeated measures designs that are not addressed in the book.
The �rst chapter of the book is devoted to present some new notions and

concepts in statistical inference, in particular, generalized p-values. Exact sta-
tistical methods based on such concepts as well as conventional ones are then
presented in rest of the chapters covering the topics of the book. Chapters
2�4 provide an introduction to ANOVA and Mixed Models, which are needed
in later chapters. Chapters 5 and 6 extend results presented in Chapter 3 to
the multivariate case. Chapters 7�10 address some basic models widely used
in the Analysis of Repeated Measures and provide solutions under alternative
assumptions and design matrices. A large number of numerical examples are
provided in each chapter to illustrate applications of methods based on the
normal theory. The computations of the major exact parametric methods pre-
sented in this book can be easily performed with the XPro statistical software
package, which specializes in Exact Parametric Inference. Most p-values and
generalized con�dence intervals involve some simple numerical integrations.
So, with some coding to implement the new formulas, the inferences can also
be carried out with widely used major statistical software packages such as
SAS, SPSS, and SPlus. In fact, one can use any statistical package that pro-
vides capabilities to generate simulated samples from normal and chi-squared
distributions so that the numerical integrations involved in the computation
of p-values could be performed by Monte Carlo methods.
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CHAPTER 2

EXACT GENERALIZED INFERENCE

2.1 INTRODUCTION

In this book, by exact generalized inference we simply mean various proce-
dures of hypothesis testing and con�dence intervals that are based on exact
probability statements. Here we con�ne our attention to the problems of mak-
ing inferences concerning parametric linear models with normally distributed
error terms. In particular, this book does not address exact nonparamet-
ric methods that are discussed, for instance in Good (1994) and Weerahandi
(1995). The purpose of this chapter is to provide a brief introduction to the
notions and methods in generalized inference that enable one to obtain para-
metric analytical methods that are based on exact probability statements.
There is a wide class of problems for which classical �xed-level tests based

on su¢ cient statistics do not exist. For speci�c examples of simple problems
in which conventional �xed-level tests do not exist, the reader is referred to
Chapter 5 of Weerahandi (1995). Actually, this is the case even with widely
used linear models. For example, in the problem of comparing the means
of two or more normal populations, exact �xed-level tests and conventional
con�dence intervals based on su¢ cient statistics are available only when the

(Generalized Inference in Repeated Measures, Edition 2). By (Weerahandi)
Copyright c
 2013 John Wiley & Sons, Inc.
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10 EXACT GENERALIZED INFERENCE

population variances are equal or when some additional information is avail-
able about the variances. The situation only gets worse in more complicated
problems such as the two-way ANOVA, the MANOVA, Mixed Models, and
in Repeated Measures models including Crossover Experiments and Growth
Curves that we will address in the following chapters. In each of these models,
exact conventional tests and con�dence intervals are available only in special
cases. The limited availability of �xed-level tests is a very serious problem.
For example, widely used classical F -tests used in linear models sometimes
fail to detect signi�cant di¤erences in treatments being compared even when
the available data provide su¢ cient evidence to do so. In applications such
as those in biomedical experiments, this drawback of classical F -tests could
substantially delay the time of getting a good drug into the market and in-
cur substantially greater research cost. Application of the classical F -test in
such an application could even result in discontinuation of good research due
to erroneous conclusions that treatments being tested are not e¤ective. In
this chapter we will extend the classical de�nition of p-values and con�dence
intervals so that one could obtain testing procedures in wide class of applica-
tions including a variety of linear models addressed in this book. Unlike the
approach in Fraser (1979), we shall do this extension without a¤ecting the
interpretations of classical tests when they do exist.
Kempthorne and Folks (1971) indicated how tests of signi�cance could be

obtained in situations where the classical approach fails, but did not give ex-
plicit de�nitions. Without formal de�nitions and derivations, Bernard (1984)
and Rice and Gaines (1989) gave formulae for computing exact p-values for
the Behrens�Fisher type tests. As it will become clear later, unconventional
p-values reported in these articles are in fact generalized p-values. In the
application of comparing two regression models, Weerahandi (1987) gave the
�rst introduction to the notion of generalized p�value and showed that it is an
exact probability of an unbiased extreme region, a well-de�ned subset of the
sample space formed by su¢ cient statistics. Motivated by that application,
Tsui and Weerahandi (1989) provided formal de�nitions and methods of de-
riving generalized p-values. In a Bayesian treatment, Meng (1994) introduced
a Bayesian p-value (posterior predictive p-value) which is, under the noninfor-
mative prior, numerically equivalent to the generalized p-value. Weerahandi
and Tsui (1996) showed how Bayesian p-values could be obtained for ANOVA
type problems, which are numerically equivalent to the generalized p-values.
As discussed at length in Weerahandi (1995), exact probability statements

are not necessarily related to the classical repeated sampling properties. In
special cases the former may have such implications on the latter, but this is
not something that one should take for granted. For example, in applications
involving discrete distributions, often one can compute exact p�values, but
not exact �xed-level tests. Rejecting a hypothesis based on such p-values, say
at the 5% level if p < 0:05, does not imply that the false positive rate in
repeated sampling is 5%. Simply, such a p-value is a measure of false pos-
itive error and hence one can indeed rejects the null hypothesis when it is
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less than a certain threshold such as the .05 level. Nevertheless, in most
practical applications, �xed-level tests based on p-values, including the gener-
alized p-values we discuss below, do provide excellent approximate �xed-level
tests that are better than asymptotic tests. In fact, according to a number
of simulation studies reported in the literature [cf. Gamage and Weerahandi
(1998), and Park and Burdick (2004)], generalized tests based on exact proba-
bility statements tend to outperform, in terms of Type I error or power, more
complicated approximate tests. Moreover, in many situations, Type I error
of generalized tests do not exceed the intended level. Therefore, procedures
based on probability statements, that are exact for any sample size, are useful
for all practitioners, regardless of they insist on repeated sampling properties
or not. Also the practitioners and researchers who insist on classical proce-
dures, and anyone who has di¢ culties with the meaning of exactness, can just
consider the generalized approach as a way of �nding good approximate tests
and con�dence intervals, which are expected to perform better than asymp-
totic methods. In summary, all practitioners and researchers of statistical
methods can bene�t from the generalized approach to statistical inference,
irrespective of their philosophy and belief, because it is an extension to the
classical approach to inference as opposed to an alternative, providing solu-
tions to a wider class of problems. Therefore, obviously the best choice of
methods available from the extended class is as good as or better than that
of the original class.
Inferences on discrete and categorical variable models, nonlinear models,

and models based on non-normal distributions are beyond the scope of this
book. In particular, the readers interested in nonparametric exact methods
based on permutation and randomization tests are referred to Mehta and
Patel (1983), Agresti (1990), Good (1994), Weerahandi (1995), and Berger
(2000). For applications of generalized inference in non-normal distributions,
the reader is referred to Ananda and Weerahandi (1996), Ananda (1999),
Krishnamoorthy and Mathew (2003), and Mathew and Roy (2004). For
nonlinear models in repeated measures the reader is referred to Davidian and
Giltinan (1995) and Vonesh and Chinchilli (1997).

2.2 TEST STATISTICS AND P -VALUES

Classical p-values as well as testing at a �xed nominal level, such as the 0.05
level, are based on what is known as test statistics. Basically, a test statistic
is a statistic with some special properties, a function of some observable data
set from an experiment. The function should not depend on any unknown
parameters to qualify to be a test statistic. In the classical approach to testing
of hypotheses, this is an important requirement because, given a set of data,
we should be able to compute such a statistic and compare against some
threshold or a critical value, which used to be available from most textbooks
in Statistics in the form of percentiles of widely used statistical distributions.



12 EXACT GENERALIZED INFERENCE

To give a formal de�nition of test statistics, consider an observable random
vector Y representing a certain population. The type of the distribution
of Y is assumed to be known except for certain unknown parameters, say
� = (�; �) where � is a parameter of interest and � is a vector of other
parameters, which are sometimes called nuisance parameters. Let 	 be the
sample space of possible values of Y; and let � be the parameter space of �.
The observed value of the random vector Y is denoted by y. Consider the
problem of testing the hypotheses

� 2 �0 versus � 2 �1, (2.1)

where �0 and �1 are two disjoint subsets of the parameter space �.

De�nition 1.1. A test statistic is a real-valued function of y and a pre-
speci�ed value �0 of �, of the form T (y;�0) satisfying the following two prop-
erties:

1. The distribution of T = T (y;�0) does not depend on the nuisance para-
meters �.

2. T is stochastically monotonic (increasing or decreasing) in �, that is, the
cumulative distribution function (abbreviated as cdf) of T is a monotonic
function of �.
In many applications Property 2 above is too restrictive or not well de�ned.
In such situations, a statistic satisfying the following milder condition is con-
sidered acceptable to be quali�ed as a test statistic:

2´. T satis�es the condition that

Pr(T � tj� 2 �0) � Pr(T � tj� 2 �1) for all t: (2.2)

In a given application, there may be multiple test statistics satisfying above
conditions. Then one can attempt to �nd a unique test statistic by imposing
certain optimality criteria. Often one can �nd unique test statistics by re-
quiring the test statistic to be based on minimal su¢ cient statistics and to be
invariant with respect to certain transformations of the parameters and the
statistics. The reader is referred to Lehmann (1986) and Weerahandi (1995)
for formal de�nitions and details on these concepts.

De�nition 1.2. A subset of the sample space C(Y ;y) is said to be an ex-
treme region if

1. the observed value y of Y falls on the boundary of the region,

2. C(Y ;y) does not depend on nuisance parameters �,

3. its probability does not depend on unknown parameters � when � has been
speci�ed,
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4. its probability increases for deviations from the null hypothesis; that is,

Pr(C(Y ;y) j � 2 �0 2 �0) � Pr(C(Y ;y) j � 2 �1) : (2.3)

De�nition 1.3. The p-value of a test based on an extreme region Cy is
de�ned as

p = SupfPr(C(Y ;y) j� 2 �0)g: (2.4)

Of particular interest is the problem of testing hypotheses of the form

H0 : � � �0 versus H1 : � > �0: (2.5)

If the test statistic T being used is stochastically increasing in �, then the
p-value can be conveniently computed using the formula

p = Pr(T � tobsj� = �0); (2.6)

a result that follows from above de�nition, where tobs is the observed value
of the test statistic. Similarly the p-value for testing hypotheses of the form
H0 : � � �0 versus H1 : � < �0 is computed using the formula p = Pr(T <
tobsj� = �0). For other related de�nitions, such as that of power functions, and
for some useful theorems in this context, the reader is referred to Weerahandi
(1995). Also of interest, especially in problems involving multiple location
parameters including a variety of ANOVA problems that we will study in the
following chapters, are hypothesis problems of the form

H0 : � = �0 versus H1 : � 6= �0: (2.7)

The literature on p-values provides alternative de�nitions of p-values for this
case except in special cases. Especially in this situation Property 2´ given
above is considered adequate. In this case the p-value is computed as

p = Pr(C(Y ;y)j� = �0) (2.8)

= Pr(T 2 Cobsj� = �0); (2.9)

where Ct is a subset of the sample space, an extreme region, de�ned by t =
T (y).
The p-values serve to measure the evidence in favor or against the null

hypothesis. The smaller the p-value, the greater the evidence against the null
hypothesis. Of course one can reject the null hypothesis when the p-value falls
below a certain threshold, which is sometimes known as the critical point in
�xed-level testing of hypotheses.
In search of testing procedures with certain optimum properties, one can

con�ne the search to extreme regions that are based on minimal su¢ cient sta-
tistics. In fact, test statistics based on su¢ cient statistics provide a convenient
way of constructing extreme regions and p-values.
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Example 1.1. Testing the normal mean

Let Y1; : : : ; Yn be a random sample from a normal population with the distri-
bution

fY (y) =
1p
2��

e�
1

2�2
(y��)2 ;

where � and �2 are the mean and the variance of the population. Let Y and
S2 be the unbiased estimators of � and �2, respectively, where

Y =

P
Yi
n

and S2 =
P
(Yi � Y )2
n� 1 :

Consider the problem of testing the hypotheses

H0 : � � �0; H1 : � > �0 (2.10)

It is known from the theory of sampling from a normal distribution that

Z =
Y � �

�=
p
n

� N(0; 1) and U = (n� 1)S2
�2

� �2n�1

and that they are independently distributed. In view of these distributional
results, we can de�ne a potential test statistic as

T =
Y � �0
S=
p
n

:

When � = �0, the random variable T has a t-distribution with n�1 degrees of
freedom. Otherwise it has a noncentral t-distribution, which is stochastically
increasing in �. This fact is also seen from the expression

Pr(T � t) = Pr( Y � �

S=
p
n
+
�� �0
S=
p
n
� t);

because
Y � �

S=
p
n
� tn�1

is free of unknown parameters. Hence, T is indeed a test statistic and there-
fore we can proceed to compute the p-value using (2.6) as

p = Pr(T � y � �0
s=
p
n
j� = �0)

= 1�Gn�1(
y � �0
s=
p
n
);

where Gn�1 is the cumulative distribution function (cdf) of the Student�s t-
distribution with n�1 degrees of freedom. The null hypothesis is rejected for
smaller values of the p-value.
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2.3 TEST VARIABLES AND GENERALIZED P -VALUES

Test statistics discussed in the previous section provides a convenient way of
constructing extreme regions, on which p-values and tests can be based. But,
as discussed extensively in Weerahandi (1995), that approach works only in
a very limited set of applications. For example in the problem of sampling
from a normal population as in Example 1.1, it is not clear how a test statis-
tic could be constructed if the parameter of interest were a function such as,
� = �+ �2. The Behrens�Fisher problem is a well-known example of a situ-
ation where a test statistic based on su¢ cient statistics does not exist. This
limitation extends well into all types of linear models including ANOVA, re-
gression models, and all types of repeated measures problems. The limitation
is caused by the fact that the test statistic is required to be a single quantity
regardless of the number of minimal su¢ cient statistics available in a statisti-
cal problem. This was a requirement even in multivariate problems, perhaps
because during the times of limited computing facilities, we had to rely on
tabulated critical points with which we can compare the observed values of
such test statistics and draw conclusions about the validity of hypotheses.
With readily available statistical software packages and ever-increasing com-
puting power, today we no longer need to rely on test statistics and tabulated
critical values.
In the spirit of Fisher�s original treatment [cf. Fisher (1956)] of hypothesis

testing, what is basically needed to device a testing procedure is to specify a
subset of the sample space, which can be considered as an extreme region if
the null hypothesis is true. It is not necessary that such an extreme region
is represented by a test statistic. Yet, as before we can insist that, in order
to be an extreme region, the subset must be unbiased and should contain the
observed sample point on its boundary. We can search for extreme regions
with desired properties within the sample space formed by minimal su¢ cient
statistics, regardless of whether or not they can be expressed in terms of a
single test statistic. Nevertheless, search for such subsets of sample space can
be facilitated by what is known as test variables in the context of generalized
inference. The notion of test variables was formerly introduced by Tsui and
Weerahandi (1989). Although it is possible to de�ne extreme regions based
on a number of statistics (preferably minimal su¢ cient statistics) without
invoking the notion of test variables, as done by Weerahandi (1987), test
variables do provide a convenient way of de�ning extreme regions as they
play the role of test statistics in the generalized setting. In particular, often
extreme regions can be de�ned using a single test variable just as in the case of
a test statistic. In early simulation studies, Thursby (1992) and Gri¢ ths and
Judge (1992) found the generalized p-value given by Weerahandi (1987) for the
problem of comparing regressions to have good size and power performance.
Performance of generalized p-values in a number of other applications are
provided by Zhou and Mathew (1994), Weerahandi and Amaratunga (1999),
and Gamage and Weerahandi (1998).



16 EXACT GENERALIZED INFERENCE

To provide formal de�nitions, consider a random vector Y with the cumu-
lative distribution function F (y; �), where � = (�; �) is a vector of unknown
parameters. Recall that � is the parameter of interest and � is a vector of nui-
sance parameters. Let y be the observed value of the random vector Y. An
extreme region with the observed sample point on its boundary can be denoted
as C(y; �; �). By taking the classical approach we de�ned extreme regions us-
ing test statistics in the previous section. That approach allowed us to de�ne
extreme regions having representations such as fY j T (Y;�0) � T (y;�0)g.
There is no reason why an extreme region should always have such a simple
structure. The boundary of extreme regions could be allowed to be any func-
tion of the quantities y, �, and �, and therefore, we need to allow test variables
to depend all these quantities. However, an extreme region is of practical use
only if its probability does not depend on �. Moreover, a subset of the sample
space obtained by more general methods should truly be an extreme region in
that its probability should be greater under the alternative hypothesis than
under the null hypothesis, as de�ned more formerly below.

De�nition 1.4. A generalized test variable is a random variable of the form
T = T (Y;y; �) having the following three conditions:

1. The observed value t = T (y;y; �) of T does not depend on unknown
parameters.

2. The probability distribution of T does not depend on nuisance parameters.

3. Given t, y and �, Pr(T � t; �) is a monotonic function of �.

In ANOVA problems and in some other applications, Property 3 is too restric-
tive or not well-de�ned. In such situations, the following milder condition,
which is referred to as the unbiasedness property, is considered adequate in
place of Property 3.

3´. T satis�es the condition that, given t, y and �,

Pr(T � tj� 2 �0) � Pr(T � tj� 2 �1) for all t: (2.11)

One can argue that Condition 1 is redundant, because if the property is
not satis�ed, then we can de�ne an alternative generalized test variable ~T as
~T = T (Y;y; �) � T (y;y; �) and then require it to have Conditions 2 and 3.
These conditions are also referred to as properties of a test variable. Property
2 ensures that p-values based on generalized test variables are of practical use
in that they can be computed for decision making. Property 3 or Property 3´
impose the requirement that the resulting testing procedure is unbiased.
It should be pointed out that any test statistic is also a test variable, and

hence De�nition 1.4 is indeed a generalization of De�nition 1.1. The main
di¤erences in the two de�nitions are that the test variables can be functions
of nuisance parameters and that the former allows the observed value y of
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Y to appear on both sides of probability statements such as Pr(YjT (Y;y; �)
� T (y;y; �)). Note that such probability statements are based on proper
subsets of the sample space � with the observed value y falling on its bound-
ary. In de�ning generalized p-values we need to make such probability state-
ments, because, as we will see throughout this book, many unbiased extreme
regions leading to tests and con�dence regions cannot be obtained by taking
the classical approach that relies on De�nition 1.1 or its variations.
Since test variables are extensions of test statistics, they inherit all advan-

tages and drawbacks of test statistics as well. In particular, usually there
are multiple test variables for a given problem of hypothesis testing and a
particular member might have certain undesirable properties. In other words,
just because a test variable satisfy above conditions does not necessarily mean
that it would lead to testing procedures having good size and power perfor-
mance. Nevertheless, in many applications we can drop candidates having
poor performance by con�ning the search for generalized test variables within
the class of complete su¢ cient statistics. Moreover, if there are still multiple
test variables, then the number of available can be further reduced by impos-
ing additional optimality conditions and other desirable conditions such as
those suggested by invariance properties.

Example 1.2. Testing the ratio of the normal distribution parameters

Let X1; : : : ; Xn be a random sample from the normal population with mean
� and variance �2. Suppose the parameter of interest is the ratio of the mean
and the standard deviation, namely � = �= �. Consider the problem of
testing the hypothesis

H0 :
�

�
� �0 against H1 :

�

�
> �0:

Without losing the power performance, testing procedures can be based on
the su¢ cient statistics

X =

nP
i=1

Xi

n
and S2 =

nP
i=1

( Xi � X )2

n
;

whose distributions are given by

Z =
p
n(
X

�
� �) � N(0 ; 1) ; and U =

nS2

�2
� �2n�1;

which are mutually independent. In this problem, it is does not seem easy to
�nd a test statistic having Properties 1 and 2 of De�nition 1.1. So, in view of
the structure of above random variables, consider the potential test variable

T =
xS

�s
� X
�
;
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a function of su¢ cient statistics, their observed values, and the parameters of
the problem. Obviously, the observed value of T is zero and hence does not
depend on any unknown parameters. When expressed as

T =
x

s

r
U

n
� Zp

n
� �

it is also clear that the distribution of T does not depend on the nuisance
parameter �. Finally, it follows from the above identity that the probability
distribution function of T is an increasing function of �, because

F (t) = Pr(T � t)

= Pr(
x

s

r
U

n
� Zp

n
� t+ �)

= FV (t+ �) (2.12)

is an increasing function of �, where

V =
x

s

r
U

n
� Zp

n

is a random variable free of unknown parameters. Hence, T satis�es all three
conditions of De�nition 1.4 and so it is indeed a test variable.

2.3.1 Generalized extreme regions and generalized p-values

Now we are in a position to generalize the de�nition of extreme regions and
facilitate their construction using generalized test variables de�ned above.

De�nition 1.5. A subset of the sample space C(Y ;y; �) is said to be a
generalized extreme region if

1. the observed value y of Y falls on the boundary of the region,

2. the probability Pr(C(Y ;y; �)) does not depend on the nuisance parameters
�,

3. the probability satisfy the property

Pr(C(Y ;y; �) j � 2 �0) � Pr(C(Y ;y; �) j � 2 �1) : (2.13)

De�nition 1.6. The generalized p-value of a test based on a generalized
extreme region is de�ned as

p = SupfPr(C(Y ;y; �) j� 2 �0)g:
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The boundary of a generalized extreme region is denoted as Cy(�): Test vari-
ables provide a convenient way of constructing generalized extreme regions.
In fact, when there is only one parameter of interest, one-sided hypotheses of
the form

H0 : � � �0 versus H1 : � > �0 (2.14)

or
H0 : � � �0 versus H1 : � < �0;

the generalized p-value can be computed conveniently. If a test variable T is
stochastically increasing in �, then the p-value can be conveniently computed
using the formulas

p = Pr(T (Y;y; �) � tobsj� = �0) (2.15)

and
p = Pr(T (Y;y; �) � tobsj� = �0);

respectively, where tobs = T (y;y; �). For other related de�nitions, such as
that of power functions, and for some useful theorems in this context, the
reader is referred to Weerahandi (1995) and Ananda and Weerahandi (2002).
Also of interest, especially in problems involving multiple location para-

meters including a variety of ANOVA problems that we will study in the
following chapters, are hypothesis problems of the form

H0 : � = �0 versus H1 : � 6= �0: (2.16)

In this situation Property 3´ of a test variable given above is considered
adequate. In this case the p-value is computed as

p = Pr(C(Y ;y; �)j� = �0)
= Pr(T 2 Ctj� = �0); (2.17)

where Ct is a subset of the sample space� an extreme region, de�ned by
t = tobs = T (y;y; �).
Just like conventional p-values, generalized p-values serve to measure the

evidence in favor or against the null hypothesis. The smaller the p-value, the
greater the evidence against the null hypothesis, as implied by Property 3.
Here also, in a �xed-level setting one can reject the null hypothesis when the
p-value falls below a certain critical value such as the typical values 0.05 and
0.01.
For other important notions in this context such as the invariance, similar-

ity, and unbiasedness, the reader is referred to Weerahandi (1995). Notions
such as the invariance is particularly useful when there are multiple test vari-
ables satisfying the necessary conditions of a test variable.

Example 1.3. Testing the ratio of the parameters of the normal distribution
(continued)
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Consider again the problem discussed in Example 1.2 involving the ratio of
the mean � and the standard deviation �. In Example 1.2 we saw that

T =
xS

�s
� X
�

=
x

s

r
U

n
� Zp

n
� �

is a generalized test variable, where X and S2 are the maximum likelihood
estimators of � and �2. Also recall that

Z =
p
n(
X

�
� �) � N(0 ; 1) ; and U =

nS2

�2
� �2n�1:

Consider again the problem of testing the hypotheses

H0 : � � �0; H1 : � > �0 ;

where � = �=� is the ratio of the parameters. Although it is possible to
obtain a p-value for this problem by the classical approach, the generalized
approach provides a more convenient way of constructing extreme regions and
p-values. Consider the natural choice for a potential extreme region de�ned
as

C = f(X;S j x
s
� X

S
)g:

This particular region is free of unknown parameters, but its probability de-
pends on the parameter of interest. In general, the generalized approach
allows the extreme region to depend even on the unknown parameters, as we
will illustrate later. The above subset of the sample space can be expressed
in terms of the test variable as

C = f(X;S j xS
�s

� X

�
)g (2.18)

= f(X;S jT � 0)g: (2.19)

It now follows from the properties of test variables that C is a proper extreme
region.
Hence, the p-value for testing the hypothesis can be computed as

p = Pr( T � 0 j � = �0 )

= Pr(
x

s

r
U

n
� Zp

n
� �0)

= Pr(
x

s
� �0 + Z=

p
np

U=n
): (2.20)

The p-value in (2.20) can be computed by numerical integration with respect
to the independent standard normal and chi-squared random variables Z and
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U . The probability of the inequality in (2.20) can also be evaluated by the
Monte Carlo method by generating a large number of random numbers from
Z and U , and then �nding the fraction of pairs of random numbers for which
the inequality is satis�ed. As it will become clear from Example 1.6, the p-
value can also be computed using the cdf of the noncentral t-distribution with
n� 1 degrees of freedom and the noncentrality parameter �0

p
n.

2.4 SUBSTITUTION METHOD

Example 1.3 demonstrates how easily one can obtain testing procedures for
functions of parameters even in situations where the classical approach can
produce exact tests, but the derivation is not as simple. In sampling from a
normal distribution, one can in fact obtain generalized p-values for any com-
plicated function such as � = (� + �)=(�2 + �2): Except for a few special
functions, the classical approach to testing of hypotheses fails to provide so-
lutions to such problems. The problems get more and more complicated in
sampling from a number of populations as we will have to address in the fol-
lowing chapters. Although the generalized approach can provide solutions in
a wide class of problems, �nding appropriate test variables in many applica-
tions is not a trivial task. So, it is desirable to have a systematic approach
that we can take in solving at least some of the problems. One such method
was proposed by Berger, Peterson, and Weerahandi (2003), which we refer to
as the substitution method.
The substitution method assumes that there is a set of observable statistics

with known distributions that is equal in number to the number of unknown
parameters of the problem, say (�1; �2; : : : ; �k). Let (X1; X2; : : : ; Xk) be the
set of observable su¢ cient statistics and let (x1; x2; : : : ; xk) be their observed
values. In many applications a set of minimal su¢ cient statistics will serve
this purpose. For example, in sampling from a normal population as we
discussed in the previous section, the two statistics X and S2 will satisfy this
requirement in tacking any speci�ed function of � and �2. It is also assumed
that through a set of random variables having distributions free of unknown
parameters, the statistics are related to the unknown parameters. Continuing
with the illustrative example, the random variables

Z =
X � �

�=
p
n
� N(0; 1) and U = nS2

�2
� �2n�1

are used to meet this requirement in the case of sampling from a single normal
population. Let (V1; V2; : : : ; Vk) be the set of random variables with distri-
butions free of unknown parameters. Though desirable, it is not necessary
that these random variables are mutually independent. However, their joint
distribution is assumed to be known. Then the substitution method is carried
out in the following steps:
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� By writing the parameter of interest, �, in terms of the parameters
(�1; �2,: : : ; �k) or otherwise, express � in terms of the su¢ cient statistics
(X1; X2,: : : ; Xk) and the random variables (V1; V2; : : : ; Vk):

� Replace the statistics (X1; X2; : : : ; Xk) by their observed values
(x1; x2; : : : ; xk) and substrate � from the result to de�ne a represen-
tation of a generalized test variable T , say Representation 1.

� Rewrite (V1; V2; : : : ; Vk) terms appearing in T in terms of
(X1; X2; : : : ; Xk) and (�1; �2; : : : ; �k) and obtain a second representa-
tion of T , say Representation 2.

� Use Representation 2 to show that T satis�es Property 1 of a test vari-
able and to show that an extreme region de�ned in terms of T have the
observed sample point on its boundary.

� Use Representation 1 to show that T satis�es Property 2 and to check
whether T satis�es Property 3.

� Compute the generalized p-value based on T .

It should be emphasized that various replacements of parameters by random
variables and substitution of random variables by their observed values as
appearing in the above steps are merely for the purpose of �nding a potential
test variable. They are by no means parts of a derivation. Of course one
cannot even do such substitutions in a derivation. Therefore, after obtaining
the form of the potential test variable, we need to prove that it is indeed a
test variable leading to a well-de�ned extreme region.

Example 1.4. Testing the parameter � = �+ �2

As discussed in Weerahandi (1995), � = �+�2 is a function of the parameters
of the normal distribution that arise in some practical applications. The
parameter can be expressed in terms of the su¢ cient statistics and random
variables as

� = X � Z �=
p
n+ �2 (2.21)

= X � Z Sp
U
+
nS2

U
; (2.22)

where Z and U are the normal and chi-squared random variables de�ned
above. Having obtained the identity that relates the parameter to the su¢ -
cient statistics and random variables that are free of unknown parameters, we
can now follow step 3 and 4 to obtain the potential test variable as
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T = x � Z sp
U
+
ns2

U
� �

= x � X � �

�=
p
n

s�=
p
n

S
+
s2�2

S2
� �

= x � s( X � �)

S
+
s2�2

S2
� �: (2.23)

Obviously, the observed value of T is zero and by construction its distribution
does not depend on nuisance parameters. It also follows from (2.23) that it
is stochastically decreasing in the parameter of interest �. Hence, T is indeed
a test variable. So, for instance hypotheses of the form H0 : � � �0 can be
tested based on the p-value

p = Pr( T � 0 j � = �0 ) (2.24)

= Pr(x � �0 � Z
sp
U
� ns

2

U
) (2.25)

Figure 1.1 shows the form of the extreme region on which the p-value is based.
The �gure is drawn for the particular observed values x = 5:5; s = 1; and
parameters � = 5; � = 1. The �gure shows a part of the sample space formed
by X and S2. The region below the curve is the extreme region. Although
this is a well-de�ned subset of the sample space with (x; s2) on its boundary,
the classical approach based on test statistics cannot produce this extreme
region.
In this example also the p-value can be computed by numerical integration

with respect to the independent standard normal and chi-squared random
variables Z and U . The probability of the inequality in appearing in the for-
mula can also be evaluated by the Monte Carlo method. This is accomplished
by generating a large number of random numbers from Z and U , and then
�nding the fraction of pairs of random numbers for which the inequality is
satis�ed.
When there is more than one parameter of interest, as usually the case in

most linear models that we will undertake, the substitution method can be
modi�ed to obtain a potential test variable. The modi�ed approach will be dis-
cussed in Chapter 3. Other more formal methods deriving test variables using
properties such as invariance are discussed by Tsui and Weerahandi (1989).
The reader is also referred to Weerahandi (1995) for a detailed discussion of
the notions of invariance, unbiasedness, and similarity. It also provides nu-
merous illustrations of how these notions can be utilized in deriving testing
procedures in the context of the generalized inference.
.
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Figure 2.1 Extreme region of su�ceient statistics

2.5 FIXED-LEVEL TESTING

Since the class of test statistics is a particular case of test variables, there is
a generalization of conventional �xed-level tests as well. In fact, despite the
unconventional approach to driving generalized tests, the generalized p-values
de�ned and illustrated in previous sections are functions of data only. This
means that the generalized p-value itself can be employed as a test statistic.
In fact, �xed-level tests based on generalized p-values can be performed as
suggested by the de�nition below.

De�nition 1.7. Let p(y) be a generalized p-value based on a generalized test
variable T = T (Y; y; �) with the observed value t = T (y; y; �). Assume
that p(y) is continuous in y. Then, the test based on the rule

reject H0 if p(y) < � (2.26)

is said to be a generalized �xed-level test of level � for testing the null hypoth-
esis H0 : � 2 �0 against the alternative H1 : � 2 �1.
Since p(y) is being used as a test statistic, a generalized �xed-level of level

� is also classical �xed-level test of approximate level �. A major advan-
tage of �xed-level tests obtained using generalized p-values compared to other
methods of obtaining �xed-level tests is that, as illustrated in Chapter 4, they
enable one to specify a general testing rule for a wide range of similar problems.
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Moreover, not only do these tests tend to be simpler both in form and in the
derivation, but also they often outperform more complicated approximations,
in power and/or in size. Therefore, the generalized p-values and generalized
�xed-level tests should be of interest to decision theorists, researchers, and
practitioners who insist on classical �xed-level tests, as well as of interest to
practitioners who prefer to report p-values. It should be noted, however, that
when we resort to generalized p-values in situations where exact classical tests
do not exist, one cannot always expect them to have other desirable properties
such as exact frequency coverage in repeated sampling.

2.5.1 Frequency Properties

Except in special cases, the generalized p-values has only unconventional fre-
quency interpretations implied by the de�nition. For example, if the experi-
ment is repeated with new samples, the proportion of samples that fall into
the current extreme region is equal to p. But this result does not really have
any implication on the Type I error.
To shed more light on this issue, consider the test statistic P de�ned as

P = p(Y), which is obtained by replacing the observed y appearing in the
generalized p-value by the random vector Y. When P is a continuous random
variable, it follows from the probability integral transform that the cumulative
distribution function F (P ; �) of P has a uniform distribution over the interval
[0; 1]; that is

F (P ) � U(0; 1):

This implies, for instance, that if we reject the null hypothesis H0 : � = �0 for
the observed values of p of P that satis�es the inequality F (p j � = �0) < �,
then in repeated sampling, the probability of rejecting H0 when H0 is true
exactly �. But the problem is that F (pj� = �0) is not always free of nuisance
parameters. In some applications such as that in Example 1.2 it is free of
nuisance parameters, as further discussed in Example 1.6. In fact when the
test variable is of the form T = T (Y; �), from the stochastic monotonicity
of T it follows that, F (P j� = �0) = Pr(P � p) can be computed using the
original test variable or using the p-value as p(y) = Pr(T � t) or Pr(T � t),
which is free of nuisance parameters, where t = T (y; �). When the test
variable is of the form T = T (Y;y; �), we can still compute the generalized
p-value, but rejecting H0 when p(y) < � is only an approximate �xed-level
test in the classical sense.
Nevertheless, according to various simulation studies reported in the litera-

ture, in many applications the generalized �xed-level tests often do not exceed
the desired level. In other situations they provide excellent approximate tests
in the classical sense. According to the simulation studies reported by Grif-
�ths and Judge (1992), Thursby (1992), Weerahandi and Johnson (1992),
and Zhou and Mathew (1994), Ananda and Weerahandi (1996, 1997), Gam-
age and Weerahandi (1998), and Weerahandi and Amaratunga (1999), in a
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variety of applications the generalized �xed-level tests did not exceed the in-
tended level. Some of these studies also reported that power performance of
generalized �xed-level tests were as good as or better than other approximate
tests which are not exact in any sense.
Even when the actual size of tests given by the rule in De�nition 1.7 exceeds

the intended level, usually it is possible to construct tests based on generalized
p-values, at the cost of a little loss of power. As Weerahandi (1995) argued,
resorting to such tests is worthwhile only in situations where repeated sam-
pling properties of �xed-level testing is considered to be practically useful as
opposed to a matter of convention or habit. The author also argued that,
if the same experiment can indeed be repeated, one should rather combine
the data to perform a more powerful test. Except perhaps for applications
involving statistical quality control, there is no common agreement about the
practical use of repeated sampling properties. Some statisticians advocate
the use of procedures having desirable properties with respect to the current
sample rather than other possible samples that could have been observed, but
were not. Moreover, as arguments of Pratt (1961) and Kiefer (1977) imply,
insisting on the repeated sampling property with the same experiment can
sometimes lead to procedures with highly undesirable features.

2.6 GENERALIZED CONFIDENCE INTERVALS

The generalized p-values have implications in interval estimation as well. In
this section we �rst de�ne a counterpart of generalized p-values in interval
estimation and then show how they can be derived directly or deduced from
generalized p-values. Just like the generalized p-values, the generalized con�-
dence intervals will prove useful to all practitioners regardless of whether or
not they insist on conventional con�dence intervals with frequency interpre-
tations.
The classical approach to interval estimation su¤er from more di¢ culties

than that of hypothesis testing. Even when the problem does not involve
nuisance parameters and there are exact con�dence intervals, in some appli-
cations they lead to results that contradict the very meaning of con�dence.
Probably Pratt (1961) was the �rst author to provide a very simple example
of a uniformly most accurate con�dence interval having highly undesirable
properties. Weerahandi (1995) showed how such undesirable con�dence in-
tervals can be avoided by expanding the class of intervals available to choose
from. Just as in the case of testing of hypotheses, here we extend the class of
available procedures for any given problem by insisting on exact probability
statements rather than on repeated sampling properties. This will enable us
to solve such problems as the Behrens�Fisher problem for which exact classi-
cal con�dence intervals do not exist. As in the Bayesian approach, the idea is
to do the best with the observed data at hand instead of talking about other
samples that could have been observed. The generalized con�dence intervals
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are nothing but the enhanced class of interval estimates obtained from exact
probability statements with no special regard to repeated sampling properties
that are of little practical use [cf. Weerahandi (1995)].

2.6.1 Classical con�dence intervals

Consider a population represented by an observable random variable Y . Let
Y = (Y1; : : : ; Yn) be a random sample available from the population. Sup-
pose the distribution of the random variable Y is known except for a vector
of parameters � = (�; �), where � is a parameter of interest and � is a vector
of nuisance parameters. In general, � could be a vector of parameters and we
might be interested in �nding a con�dence region, but for the sake of simplic-
ity and to be speci�c, let us �rst assume that there is only one parameter of
interest and we are interested in �nding an interval estimate of � based on
observed values of Y. The problem is to construct generalized con�dence
intervals of the form [A(y); B(y)] � �, where A(y) and B(y) are functions
of y, the observed data.
In the classical approach to interval estimation we �nd two functions of

the observable random vector, say A(Y) and B(Y) such that the probability
statement

Pr[ A(Y) � � � B(Y) ] = 
 (2.27)

is satis�ed, where 
 is speci�ed by the desired con�dence level. For example,
to construct 95% con�dence intervals we set 
 at 0.95. If it is possible to
�nd two such functions, A(Y) and B(Y), that do not depend on unknown
parameters, then we compute a = A(x) and b = B(y) using the observed value
y of Y and call [a; b] a 100
% con�dence interval. The interval obtained in
this manner has the property that, in repeated sampling, the interval would
contain the parameter �; 100
% of the times. It of course has no implication
about the coverage of � with the sample that we have actually observed. In fact
Pratt (1961) and Kiefer (1977) provide examples where the current intervals
violating the very meaning of con�dence. In particular, they showed that in
those applications the so called exact con�dence intervals do not contain the
parameters at all. The only thing truly exact about a con�dence interval is
the probability statement on which the interval is based.
Therefore, we can extend the class of candidates eligible to be interval

estimators by insisting on the probability statement only. This will allow us
to �nd interval estimates for situations where it is not easy or impossible to
�nd A(Y) and B(Y) satisfying (2.27) for all possible values of the nuisance
parameters. Weerahandi (1993) showed how this can be accomplished by
making probability statements relative to the observed sample, as done in
the Bayesian approach, but without having to treat unknown parameters as
random variables. More precisely, we can allow A() and B() to depend on the
observable random vector Y and the observed data y both. When there are
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a number of parameters of interest, in general we could allow subsets of the
sample space possibly depending on the current sample point y of Y. The
construction of such regions can be facilitated by generalizing the classical
de�nition of pivotal quantities.

De�nition 1.8. A random variable of the form R = R(Y;y; �), a function
ofY ,y, and �, is said to be a generalized pivotal quantity if it has the following
two properties:

Property A: The probability distribution of R does not depend on unknown
parameters.

Property B: The observed pivotal, robs = R(y;y; �) does not depend on
nuisance parameters, �.
Property A allows us to write probability statements leading to con�dence

regions that can be evaluated regardless of the values of the unknown para-
meters. Property B ensures that when we specify the region with the current
sample point y, then we can obtain a subset of the parameter space that can
be computed without knowing the values of the nuisance parameters.

Example 1.5. The ratio of the parameters of the normal distribution (con-
tinued)

Let X1; : : : ; Xn be a random sample from the normal population with mean �
and variance �2. Suppose � = �= �, the ratio of the mean and the standard
deviation, is the parameter of interest. In view of the results in Example 1.2,
consider the potential generalized pivotal quantity

R = R((X;S);x; s; �; �) =
xS

�s
� X
�
+ �;

based on the su¢ cient statistics, their observed values, and the parameters
of the problem. Obviously, the observed value of R is � and so it satis�es
Property B of a generalized pivotal. When expressed as

R =
x

s

r
U

n
� Zp

n
;

it is also clear that the distribution of R is free of unknown parameters, where

Z =
p
n(
X

�
� � ) � N( 0 ; 1 ) ; and U =

nS2

�2
� �2n�1:

Hence R is indeed a generalized pivotal quantity.
Suppose we have constructed a generalized pivotal R = R(Y;y; �) for

a parameter � of interest and we wish to construct a con�dence region at
con�dence coe¢ cient 
. Consider a subset C
 of the sample space chosen
such that

Pr( R 2 C
 ) = 
 : (2.28)
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The region de�ned by (2.28) also speci�es a subset C(y; �) of the original
sample space satisfying the equation Pr(Y 2 C(y; �)) = 
. Unlike classical
con�dence intervals, this region depends not only on 
 and �, but also on
the current sample point y. With this generalization we can obtain interval
estimates on � relative to the observed sample with no special regard to sam-
ples that could have been observed but were not. Although the generalized
approach shares the same philosophy of the Bayesian approach that the infer-
ences should be made with special regard to the data at hand, here we do not
treat parameters as random variables and hence the probability statements
are made with respect to the random vector Y. Having speci�ed a subset of
the sample space relative to the current sample point, we can evaluate the
region at the observed sample point and proceed to solve (2.28) for � and
obtain a region as de�ned below

De�nition 1.9. A subset �c of the parameter space is said to be a 100
%
generalized con�dence interval for � if it satis�es the equation

�c(r) = f� 2 � j R(y;y; �) 2 C
g; (2.29)

where the subset C
 of the sample space � of R satis�es equation (2.28).
It should be noted that generalized con�dence intervals are not alternatives,

but rather extensions of classical con�dence intervals. In fact, for a given prob-
lem there is usually a class of con�dence intervals satisfying the probability
statement (2.28), a feature of classical intervals as well. Weerahandi (1995)
discussed how the choice of appropriate generalized pivotals could be facil-
itated by invoking the principals of su¢ ciency and invariance. Even after
we have obtained a particular pivotal quantity we could construct a variety
of con�dence regions. Depending on the application, a left-sided interval, a
right-sided interval, a two-sided interval symmetric around the parameter, a
shortest con�dence interval, or some other interval might be preferable.
Being an extension, the generalized con�dence intervals also inherit all de-

sirable and undesirable features of con�dence intervals. Weerahandi (1995)
shows how the extended class of intervals help avoid some of the undesir-
able features of classical intervals. In those applications where the classi-
cal approach fails to provide exact con�dence intervals and yet the classical
Bayesian approach works, the generalized con�dence intervals are often (but
not always) numerically equivalent to the Bayesian con�dence intervals under
certain noninformative priors. At present there are no Bayesian results avail-
able for most of the ANOVA type problems that we will encounter throughout
this book. In fact ANOVA can be considered as a class of problems in which
the classical Bayesian approach fails and hence the Bayesian school has been
silent in a wide class of problems in the area of repeated measures. In a
Bayesian treatment of the one-way ANOVA problem, however, Weerahandi
and Tsui (1996) showed how Bayesian procedures equivalent to generalized
p-values can be derived using the posterior predictive p-value approach intro-
duced by Meng (1994) [see also Gelman, Meng, and Stern (1996)]. In fact
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their exposition provides a promising Bayesian approach that one can take in
solving problems in the context of repeated measures.

2.6.2 Intervals with frequency interpretations

Neither the generalized approach nor the classical approach is truly based on
repeated sampling considerations. The probability statements such as (2.27),
however, have implications in repeated sampling from the same sample space.
To be speci�c, consider the problem of interval estimation of a parameter �. If
the same experiment is repeated a large number of times to obtain new sets of
observations, y, of the same sample size n, then the con�dence intervals given
by the probability statement (2.27) will include the true value of the parameter
�, 100
% of the time. The generalized con�dence intervals, Bayesian intervals,
and classical intervals on parameters of discrete distributions do not have this
property exactly, but they all do so approximately.
The above property has no implication on the coverage of the parameter

by the current sample. In fact Pratt (1961) showed situations where the cur-
rent sample itself implies that the con�dence interval does not contain the
parameter. Weerahandi (1993) argued that a con�dence interval we report
does not even remain valid if we can indeed repeat the experiment to obtain
more samples. Even if one attempts to justify its practical use by imagining
a large number of practitioners analyzing di¤erent sets of data from identi-
cal experiments (which is unlikely even for two practitioners, except perhaps
in quality control problems, where the same experiment is repeated period-
ically), the fraction of practitioners with intervals containing the parameter
will only be approximately 100
%. The only thing exact about a con�dence
interval is the probability statement on which the interval is based, a property
that generalized con�dence intervals also have. Weerahandi (1995) also pro-
vided some unconventional repeated sampling properties that the generalized
con�dence intervals possess. Although the repeated sampling experiments are
all hypothetical, the repeated sampling property has one practical use when
one needs to compare the performance of any type of con�dence intervals by
simulation regardless of the way they are constructed.
The generalized con�dence intervals can also serve as approximate classical

con�dence intervals, and so they are useful to all practitioners regardless of
the unconventional way they are constructed. A number of studies have re-
ported �ndings on the repeated sampling properties of generalized procedures.
The simulation studies carried out by Gri¢ ths and Judge (1992), Thursby
(1992), Weerahandi and Johnson (1992), Zhou and Mathew (1994), Gamage
and Weerahandi (1998), and Weerahandi and Amaratunga (1999) show that
in most applications, the generalized con�dence intervals preserve the con-
�dence level. That is, actual coverage of generalized con�dence intervals is
less than or equal to the intended level. In other applications, they not only
hold the con�dence level approximately but also tend to perform better than
other approximations available in the literature. Therefore, practitioners who
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prefer to make inferences without deviating from the classical philosophy of
statistical inference can also take advantage of generalized con�dence intervals
to �nd solutions in wide class of problems.

Example 1.6. The ratio of the parameters of the normal distribution (con-
tinued)

In Example 1.5 we showed that, in the problem of sampling from a normal
distribution with mean � and standard deviation and �,

R =
xS

�s
� X
�
+ �

=
x

s

r
U

n
� Zp

n
; (2.30)

is a generalized pivotal quantity for � = �= �, the ratio of the mean and
the standard deviation, where Z is standard normal random variable and U
is a chi-squared random variable with n� 1 degrees of freedom. Suppose the
problem is to construct 100
% lower con�dence intervals for �. Consider the
probability statement


 = Pr(R � k)

= Pr(
x

s

r
U

n
� Zp

n
� k)

= Pr(
x

s
� k

p
n+ Zp
U

)

= 1� Pr( k
p
n+ Zp

U=(n� 1)
� x

s

p
n� 1)

= 1� FW (
x

s

p
n� 1); (2.31)

where FW is the cdf of the random variable W , which has noncentral t-
distribution with n� 1 degrees of freedom and noncentrality parameter k

p
n.

Let k(x=s; 
) be the value of k that satis�es the above equation. Since the
observed value of R is �, it is now clear that (� � k(x=s; 
) is a 100
% lower
con�dence interval for �.
Note that in this application R = xS

�s �
X
� + � is not a pivotal quantity in

the classical sense. Yet the generalized con�dence interval is also a classical
con�dence interval having the repeated sampling property. To see this more
clearly, notice that

Pr(
X

S
� c) = Pr(Z + �

p
np

U
� c)

= 1� FW (c
p
n� 1) = 
 (2.32)
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and hence the generalized con�dence intervals given by R is equivalent to the
classical interval given by the statistic V = X=S. Yet V is not a pivotal
quantity in the classical sense. In repeated sampling, x=s would fall below c;
100
% of the times and the above con�dence interval would contain �; 100
%
of the times. Not in all situations can a generalized con�dence interval also be
attained using a statistic or a pivotal quantity. The Behrens�Fisher problem
is the well-known problem where such statistics do not exist. This is also the
case in simpler problems such as the ones undertaken in the illustrations of
the next two sections.

2.7 SUBSTITUTION METHOD IN INTERVAL ESTIMATION

In Example 1.6, we obtained a generalized pivotal quantity by using the gen-
eralized test variable we had obtained before. It is desirable to have an in-
dependent and a systematic method of �nding generalized pivotals when the
parameter of interest is not a simple function of the parameters of the un-
derlying distribution. Peterson, Berger, and Weerahandi (2003) proposed one
such method for a class of applications. As we discussed its counterpart in the
context of testing of hypotheses, the procedure involves various substitutions
of random variables by their observed values and parameters and hence they
called the method the substitution approach.
This method requires that there is a set of observable statistics with known

distributions that is equal in number to the number of unknown parameters
of the problem, say (�1; �2; : : : ; �k). Again consider a set of observable statis-
tics (X1; X2; : : : ; Xk) with the observed values (x1; x2; : : : ; xk). It is assumed
that through a set of random variables having distributions free of unknown
parameters, the statistics are related to the unknown parameters. In many
applications this would be a set of minimal su¢ cient statistics with known
distributions that can be transformed into distributions free of unknown pa-
rameters. Recall that, for the problem of sampling from a normal population,
the two statistics X and S2 will serve this need in constructing interval es-
timates for a certain function of .� and �2. In that situation the su¢ cient
statistics can be transformed into a standard normal random variable and a
chi-squared random variable.
Let V = (V1; V2; : : : ; Vk) be the set of random variables with distributions

free of unknown parameters. It is assumed that the joint distribution of the
random vector V is known. Although the substitution method can work
when � is a vector of parameters and we need to �nd a generalized con�dence
region for �, for the sake of simplicity, here we present the method when
there is just one parameter of interest. In Chapter 6 we deal with situations
where there is a vector of parameters of interest and hence we will leverage the
substitution method in such a way that substitutions implemented in terms of
various matrix inversions and multiplications are valid in the context of matrix
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algebra. In �nding generalized pivotal quantities, the substitution method is
carried out in the following steps:

� Express the parameters (�1; �2; : : : ; �k) and then � in terms of the su¢ -
cient statistics (X1; X2; : : : ; Xk) and the random variables
(V1; V2,: : : ; Vk):

� De�ne a potential generalized pivotal quantity, say R, by replacing the
statistics (X1; X2; : : : ; Xk) by their observed values x = (x1; x2; : : : ; xk)
and argue that the distribution of is free of unknown parameters.

� Rewrite (V1; V2; : : : ; Vk) terms appearing in R in terms of X and � and
show that when X = x, the observed value of the quantity R(x;x;�)
does not depend on the nuisance parameters, where
X = (X1; X2,: : : ; Xk) and � = (�1; �2; : : : ; �k).

It should be emphasized that various substations and use of alternative re-
placements in the above steps are merely steps in obtaining a potential gen-
eralized pivotal of the form R = R(X;x;�). Then we can establish that it
is indeed a generalizer pivotal quantity and proceed to construct generalized
con�dence intervals having desirable features. Moreover, as Berger, Peterson,
and Weerahandi (2003) state, just because R is a generalized pivotal quan-
tity, there is no guarantee that it will always lead to inference procedures
having optimum properties. Unless the pivotal based on minimal su¢ cient
statistics is unique up to equivalent pivotals, a generalized pivotal quantity
obtained by another method may have better properties. In many applica-
tions, the choice of available pivotals can be minimized by requiring them to
have further desirable properties such as the invariance.

Example 1.7. Interval estimation of � = (�+ �)=(�2 + �2)

The substitution method is especially useful in �nding con�dence intervals of
complicated functions of parameters such as � in this example, where � and �
are the mean and the standard deviation of the normal distribution. Consider
the problem of �nding intervals for � based on the su¢ cient statistics X and
S2. Recalling that

Z =
p
n(
X � �
�

) � N(0; 1) and U = nS2

�2
� �2n�1:

we can base the substitution method on the identity

� = (�+ �)=(�2 + �2)

=
X � Z �=

p
n+ �

(X � Z �=
p
n)2 + �2

=
X � Z S=

p
U + S

p
n=U

(X � Z S=
p
U)2 + nS2=U

: (2.33)
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Now replacing the observable random variables by the observed values, we get
two representations of the potential generalized pivotal as

R =
x � Z s=

p
U + s

p
n=U

(x � Z s=
p
U)2 + ns2=U

(2.34)

=
x � s(X � �)=S + s�=S

(x � s(X � �)=S)2 + (s�=S)2
(2.35)

It is evident from the �rst of the above representations that the distribu-
tion R is free of unknown parameters, and the second representation implies
that robs = R(X ;S;x; s;�;�) = � does not depend on nuisance parameters.
Hence R is indeed a generalized pivotal quantity, and so we can construct any
type of generalized con�dence intervals for the parameter of interest �. For
example 100
% upper con�dence bound can be obtained by �nding k from
the probability statement


 = Pr(R � k)
= Pr(x � Z s=

p
U + s

p
n=U � k((x � Z s=

p
U)2 + ns2=U)): (2.36)

The probability can be evaluated by numerical integration with respect to
(Z;U) or by Monte Carlo integration. If k
 is the value of k that satis�es the
above inequality, then the 100
% upper con�dence bound for � is k
 .

2.8 GENERALIZED P -VALUE-BASED INTERVALS

Generalized con�dence intervals can also be deduced from generalized p-
values. This method is specially useful when we have already dealt with
a hypothesis testing problem concerning the parameter of interest, say �, a
function of the parameters of underlying distribution. Suppose we have ob-
tained a p-value, say p(t; �0) for testing a one-sided null hypothesis. Assume
that the p-value is based on a generalized test variable T , which is stochas-
tically increasing in �. When the form of the p-value is known in terms of
�0, consider the function p(t; �) of the test is obtained simply by replacing �0
by �. In fact, in repeated sampling with �xed x, p(T (X;x; �); �) serves as a
generalized pivotal quantity having a uniform distribution on [0; 1], provided
that T is a continuous random variable. Therefore, suppressing t in p(t; �)
inequalities such as

[ p(�) � 
] (2.37)

would yield one-sided 100
% generalized con�dence intervals for �. Similarly,
statements such as

[ 
1 � p(�) � 
2 ] (2.38)

can be used to obtain bounded 100
% generalized con�dence intervals for �,
where 
1 and 
2 are numbers between 0 and 1 chosen appropriately subject
to the condition 
 = 
2 � 
1.
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Example 1.8. Interval estimation of � = �+ �2

In Example 1.4 we obtained generalized p-values for testing the parameter,
� = �+ �2, the sum of the mean and the variance of the normal distribution
N(�; �2). Consider the problem of constructing con�dence intervals for �
based on the su¢ cient statistics X and S2. Recall that in Example 1.4 by
using the generalized test variable

T = x � s( X � �)

S
+
s2�2

S2
� �

we obtained the generalized p-value

p = Pr( T � 0 j � = �0 ) (2.39)

= Pr(x � �0 � Z
sp
U
� ns

2

U
) (2.40)

for testing hypotheses of the form H0 : � � �0, where the probability is com-
puted with respect to the independently distributed standard normal random
variable Z and the chi-squared random variable U . Let

W = x � Z sp
U
+
ns2

U

so that we can use
p(�) = Pr(W � �)

to deduce generalized con�dence intervals from generalized p-values. Since W
is a continuous random variable, P = p(W ) has a uniform distribution on the
[0,1] interval when (x; s) �xed at the current values. Therefore if �� is chosen
such that

p(��) = Pr(x � Z sp
U
+
ns2

U
� ��) = :95;

then (P (�) � P (��)] is a 95% generalized con�dence interval for �. Since
p(W ) is an increasing function of W , the 95% generalized con�dence interval
is in fact (� � ��]. Moreover, if �� is chosen such that

p(��) = Pr(x � Z sp
U
+
ns2

U
� ��) = :05;

then [��; �
�] is a 90% con�dence interval for �.
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Exercises

2.1 Let Y1; :::; Yn be a random sample from the normal distribution with
mean � and variance �2. Let Y and S2 be the unbiased estimators of � and
�2, respectively, where

Y =

P
Yi
n

and S2 =
P
(Yi � Y )2
n� 1 :

Show that

Z =
Y � �

�=
p
n

� N(0; 1) and U = (n� 1)S2
�2

� �2n�1:

Also show that the random variables Z and U are independently distributed.

2.2 Consider a random sample Y1; :::; Yn from a population with mean �
and variance �2. Suppose � = �=�2 is the parameter of interest. By applying
the substitution method or otherwise,

(a) obtain a generalized test statistic for making inferences about the para-
meter �,
(b) obtain generalized p-values for testing hypotheses of the form H0 : � �
�0 against H1 : � > �0,
(c) deduce left-sided and right-sided 100
% generalized con�dence intervals
for �.

2.3 Consider the generalized test variable obtained in the previous problem.

(a) Deduce a generalized pivotal quantity appropriate in interval estimation
for the parameter �.
(b) Obtain the equal tail 100
% generalized con�dence intervals for �.
(c) Discuss whether or not this generalized con�dence interval has the repeated
sampling property.

2.4 Consider a random sample from a normal population. Establish proce-
dures for making inferences about the second moment of its distribution.

2.5 Consider again a random sample from a normal population. Establish
procedures for making inferences about the third moment of the distribution.

2.6 Suppose Y1; :::; Yn is a random sample from a normal population with
mean � and variance �2. In a certain statistical problem, suppose

1

�
+
1

�

is the parameter of interest. By applying the substitution method or other-
wise,
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(a) obtain a generalized pivotal quantity for interval estimation of the para-
meter �,
(b) construct 100
% generalized con�dence intervals for �,
(c) deduce a test variable from the generalized pivotal,
(d) �nd the generalized p-value given by that test variable for testing hypothe-
ses of the form H0 : � � �0 against H1 : � < �0.

2.7 Let X1; : : : ; Xn be a random sample from the uniform distribution with
density

fX(x) =
1

� � � for � � x � � :

Suppose that � = �=(� + �) is the parameter of interest. Let X(1); :::; X(n)
be the order statistic.

(a) Show that (X(1); X(n)) is a su¢ cient for making inference about any func-
tion of � and �.
(b) Obtain the joint distribution of (X(1); X(n)).
(b) Construct generalized con�dence intervals for the parameter � = �=(�+
�).
(d) Does this interval have the repeated sampling property?

2.8 Consider again the problem of sampling from the uniform distribution
given in the previous exercise. Deduce from the above results generalized
procedures for testing hypotheses concerning the parameter �.

2.9 Let Y1; : : : ; Yn be a random sample from a distribution with the density
function

f(y) =
��

�� �
1

y2
for � � y � �;

where � and � are positive parameters.

(a) Find two su¢ cient statistics for making inferences about any function of
(�; �).
(b) By considering the distribution of X = 1=Y or otherwise, �nd a general-
ized pivotal quantity for making inferences about the parameter � = �=(�� �).
(c) Find 100
% generalized con�dence intervals for �.
(d) Find the generalized p-value for testing left-sided and right-sided null hy-
potheses concerning the parameter �.

2.10 Suppose X1; : : : ; Xm and Y1; : : : ; Yn are two independent sets of in-
dependent exponential random variables with means � and �, respectively.
Establish generalized procedures for making inferences about the di¤erence in
means, � = �� �.

2.11 Let Y1; : : : ; Yn be a random sample from the two-parameter exponen-
tial distribution

f(y) =
1

�
e�(y��)=� for � < y ; � > 0:
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(a) Express the mean � and the variance �2 of the distribution in terms of �
and �.
(b) Find a set of minimal su¢ cient statistics for making inferences about
functions of the parameters of the distribution.
(c) Establish procedures for making inferences about the mean �.
(d) Establish procedures for making inferences about the variance �2.



CHAPTER 3

METHODS IN ANALYSIS OF VARIANCE

3.1 INTRODUCTION

Many biomedical, socioeconomic, and industrial experiments, and even busi-
ness and marketing trials, involve comparison of two or more populations.
Data from such experiments may pertain to observations taken at a single
point in time or repeated measures taken over time. In either case, appropri-
ate statistical methods available for analysis of data from such experiments
include a procedure known as the Analysis of Variance, which is abbrevi-
ated as ANOVA. The purpose of this chapter is to introduce some widely
used procedures for comparing a number of univariate normal populations.
Later in Chapters 5�10, we will extend the main results presented in this
chapter to the case of multivariate normal populations under various models.
Here we con�ne our attention primarily to the problem of comparing popula-
tion means. The readers interested in inferences concerning other parameters
such as the variance and the reliability parameter are referred to Weerahandi
(1995). This chapter also presents some latest developments in the problem
of comparing normal means.

(Generalized Inference in Repeated Measures, Edition 2). By (Weerahandi)
Copyright c
 2013 John Wiley & Sons, Inc.
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In practical applications, often we need to compare several population
means. In biomedical experiments, one often has to deal with the problem
of comparing available and potential treatments for a certain disease. The
problem also arises in almost every �eld of research including industrial ex-
periments, agricultural experiments, socioeconomic experiments, and so on.
For example, an investigator might wish to compare several types of a prod-
uct, or some diet plans, or several brands of fertilizers, or some methods of
teaching, or advertising methods, and so on. When the means are computed
using samples of data taken from the populations being compared, almost
always the sample means will be di¤erent of course regardless of whether the
population means are equal or not. The question that we need to answer is
whether or not such di¤erences are due to real di¤erences in the population
means or they are just artifacts of sampling variation. Once we conclude that
population means are di¤erent, then we also need to address the question that
how di¤erent the means are.

3.2 COMPARING TWO POPULATION MEANS

The purpose of this section is to provide a brief overview of some important
results available in the literature for comparing two normal populations. The
results valid for the two-sample problem will prove to be useful even in multiple
comparisons involving a number of normal populations. Here we consider only
the problem of comparing the means of two normal populations. For details of
the problem and for related problems concerning two populations, such as the
problem of comparing the variances of two normal populations or comparing
the means of two exponential populations, the reader is referred to Weerahandi
(1995).
Consider two populations that we would like to compare. Let

Y11; Y12; : : : ; Y1n1

be a random sample of size n1 from the �rst population and let

Y21;Y22; : : : ; Y2n2

be a random sample of size n2 from the second population. Assume that the
data are normally distributed. More speci�cally assume that

Y1j � N(�1; �21); j = 1; : : : ; n1 (3.1)

Y2j � N(�2; �22); j = 1; : : : ; n2 . (3.2)

Let

Y 1 =

P
Y1j
n1

; Y 2 =

P
Y2j
n2

and

S21 =

P
(Y1j � Y 1)2
n1

; S22 =

P
(Y2j � Y 2)2
n2
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be the sample means and sample variances of the two data sets, which are
the Maximum Likelihood Estimates for the population means and variances.
It is well known that (Y 1; Y 2; S21 ; S

2
2) is a set of su¢ cient statistics for the

parameters of the populations, namely for (�1; �2; �
2
1; �

2
2). The distributions

of these statistics are given by

Y i � N(�i;
�2i
ni
); i = 1; 2 (3.3)

and
niS

2
i

�2i
� �2ni�1 , i = 1; 2 . (3.4)

Moreover, these four random variables are mutually independent.

3.2.1 Case of equal variances

Assume �rst that the variances of the two populations are equal, an assump-
tion that we will relax later in this chapter. Let �2 be the common variance.
In this case the set of su¢ cient statistics further reduces to (Y 1; Y 2; S2), where

S2 =

P
(Y1j � Y 1)2 +

P
(Y2j � Y 2)2

n1 + n2 � 2

is referred to as the pooled unbiased sample variance. Its distribution that
follows from (3.4) is

(n1 + n2 � 2)S2
�2

� �2n1+n2�2.

Inferences on the di¤erence in the two means can be based on the random
variable T� = (Y 1 � Y 2 � �)=S, where � = �1 � �2. Since

(Y 1 � Y 2 � (�1 � �2)) � N(0; �2(
1

n1
+
1

n2
));

its distribution is given by

T�q
1
n1
+ 1

n2

� tn1+n2�2 . (3.5)

This result can be employed to construct testing procedures and con�dence
intervals for �. First consider the problem of testing hypotheses of the form

H0 : �1 � �2 � �0; (3.6)

where � is a speci�ed constant. Clearly T = T�0 is a test statistic appropriate
for testing (3.6), because its distribution is free of unknown parameters and
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its distribution is stochastically increasing in �. Hence, the p-value for testing
H0 is computed as

p = Sup
���0

Pr(T � tobs)

= 1� Pr(T < y1 � y2 � �0
s

)

= 1�G
n1+n2�2

(
y1 � y2 � �0
s
q

1
n1
+ 1

n2

); (3.7)

where (y1; y2; s) is the set of observed values of (Y 1; Y 2; S) and Gn1+n2�2
is

the cumulative distribution function (cdf) of the t distribution with n1+n2�2
degrees of freedom. The null hypothesis is rejected if the p-value is too small,
say less than a certain nominal value such as 0:05. The p-value for testing
two-sided hypotheses of the form H0 : �1 � �2 = �0 can be obtained in a
similar manner as

p = 2Gn1+n2�2
(�jy1 � y2 � �0j

s
q

1
n1
+ 1

n2

): (3.8)

To outline the approach to constructing various con�dence intervals, con-
sider the problem of �nding equal-tail con�dence intervals for the di¤erence
in the two population means, � = �1 � �2. Let t� denote the �th quantile of
the t distribution with n1 + n2 � 2 degrees of freedom. To construct 100
%
con�dence intervals, consider the probability statement


 = Pr(�t 1+

2
� T�q

1
n1
+ 1

n2

� t 1+

2
)

= Pr(�t 1+

2
S

r
1

n1
+
1

n2
� Y 1 � Y 2 � � � t 1+


2
S

r
1

n1
+
1

n2
); (3.9)

which follows from the de�nition of the quantiles. It is now evident from (3.9)
that the 100
% equal tail con�dence interval for � is�
(y1 � y2)� t 1+


2
s

r
1

n1
+
1

n2
� � � (y1 � y2) + t 1+


2
s

r
1

n1
+
1

n2

�
. (3.10)

Similarly, right-sided con�dence intervals for � can be obtained using the
formula �

� � (y1 � y2) + t
s
r
1

n1
+
1

n2

�
: (3.11)

Example 2.1. Testing the e¤ectiveness of a promotional campaign
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In order to quantify the e¤ect of a promotional display of a product, weekly
sales data are obtained from 10 stores before and after the start of the pro-
motion. These stores are referred to as test stores. Any increase in sales from
one week to another could occur due to reasons other than the promotion, say
due to improved weather conditions in the second week. Therefore, weekly
sales are obtained from a sample of control stores without the promotion as
well. Logarithmic weekly sales from the test stores and the control are shown
in Table 2.1.

Table 3.1 Log sales by promotion

Test stores Control stores

Before After Before After

8.2 11.7 24.5 23.1
10.1 12.4 17.5 16.5
13.5 12.8 21.3 21.7
7.0 10.2 16.5 18.2
13.6 12.9 16.2 15.9
8.6 11.8 13.3 14.1
11.1 11.8 8.7 9.8
13.3 12.5 20.6 19.1
13.9 14.1 17.9 18.9
10.3 12.6 25.6 24.9

This is in fact a particular case of repeated measures experiments that
we will study in great detail in Chapter 5�10. Nevertheless, in the case
of two periods as in this example, the data can be analyzed by applying
the methods in this section under the assumption that the log sales data
are normally distributed, a reasonable assumption as often seen in practical
applications. This is accomplished by analyzing the increase in store sales
during the promotional period. This is indeed appropriate thing to do, because
the mean increase in sales that can be attributed to the promotion is the
quantity of primary interest. Table 2.2 shows the two sets of increased sales
�gures that are appropriate for analysis by two sample methods.

Table 3.2 Increase in log sales

Test stores: 3.5, 2.3, -0.7, 3.2, -0.7, 3.2, 0.7, -0.8, 0.2, 2.3

Control stores: -1.4, -1.0, 0.4, 1.7, -0.3, 0.8, 1.1, -0.7, 1.0, -0.7

Let �t and �c be the change in mean log sales for the test and control
sales, respectively. Their estimates given by the sample means are 1.32 and
0.09, respectively, indicating the possibility that the promotion has worked.
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The question is whether or not this is an artifact of sampling variation of the
data across stores. To establish the statistical signi�cance of the e¤ectiveness
of the promotion, let us apply the t-test given by (3.7). Nevertheless, it
should be noted here that the assumption of equal variances might not be
reasonable, because the sample variances of the two sets of data are 2.80
and 0.99, respectively, and therefore we will revisit the problem later in this
chapter. If we formulate the null hypothesis as H0 : �t � �c = 0, then
the p-value appropriate for testing the hypothesis can be computed using
(3.8). The resulting p-value is 0.07, indicating some evidence against the null
hypothesis. In �xed-level testing, the result is not signi�cant at the 0:05 level,
but it is signi�cant at the 0.1 level. The 95% equal-tail con�dence interval of
� = �t��c computed from (3.10), namely the interval [-0.1331, 2.593], implies
the same conclusion. If we formulate the hypothesis as H0 : �t � �c � 0 of
course, the p�value computed from (3.7) becomes 0.037, which allows us to
reject the null hypothesis at the 0:05 level of �xed-level testing.

3.3 CASE OF UNEQUAL VARIANCES

Now let us drop the assumption of equal variances, and consider again the
problem of comparing the means of two normal populations. The problem
of �nding inference procedures based on su¢ cient statistics in this context
is often referred to as the Behrens�Fisher problem. Tsui and Weerahandi
(1989) solved this problem by taking the generalized p-value approach and
their result is also equivalent to that of Bernard (1984). It is also numerically
equivalent to the Bayesian solution under the natural non-informative prior.
A formal derivation of the generalized t-test for the Behrens�Fisher problem
could be found in Weerahandi (1995). Here we provide an intuitive argument
using the substitution method.
Notice �rst of all from (3.3) that if the two variances were known, we would

base our inference procedures on the result

Z =
Y 1 � Y 2 � �q

�21
n1
+

�22
n2

� N(0; 1); (3.12)

where � = �1 � �2. When the variances are unknown, as usually the case,
we cannot compute the Z statistic. In this case we can tackle the unknown
variances by taking advantage of the distributional result

Vi =
niS

2
i

�2i
� �2ni�1:

The substitution approach suggests that, when the variances are unknown,
the p-value should be computed using the formula

Pr(
Y 1 � Y 2 � �q

�21
n1
+

�22
n2

� y1 � y2 � �0q
s21
Y1
+

s22
Y2

):
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To establish this result, consider the test variable given by the substitution
method

T = (y1 � y2)� Z

s
s21
V1
+
s22
V2
� �

= (y1 � y2)�
(Y 1 � Y 2 � �)q

�21
n1
+

�22
n2

s
�21s

2
1

n1S21
+
�22s

2
2

n2S22
� � (3.13)

with the observed value tobs = 0: It is clear that the distribution of T and
its observed value are both free of nuisance parameters. Moreover, it is sto-
chastically decreasing in �, the parameter of interest. Hence, the p-value for
testing left-sided null hypotheses of the form H0 : �1 � �2 � �0 can be based
on the generalized p-value

p = Sup
���0

Pr(T � 0)

= Sup
���0

Pr(Z

s
s21
V1
+
s22
V2
� y1 � y2 � �)

= Pr(Z � y1 � y2 � �0q
s21
V1
+

s22
V2

), (3.14)

as expected. Although this representation of the p-value is su¢ cient for nu-
merical computation of the p-value, the dimension of numerical integration
can be reduced by de�ning a beta random variable and an independent chi-
squared random variable as

B =
V1

V1 + V2
� Beta(n1 � 1

2
;
n2 � 1
2

), V = V1 + V2 � �2n1+n2�2. (3.15)

In terms of B and Y random variables we can express the p-value as

p = Pr(Z � y1 � y2 � �0q
s21
BV +

s22
(1�B)V

)

= Pr

0@ Zp
V=(n1 + n2 � 2)

� y1 � y2 � �0q
(
s21
B +

s22
(1�B) )=(n1 + n2 � 2)

1A

= 1� EG
n1+n2�2

0B@(y1 � y2 � �0)
vuutn1 + n2 � 2

s21
B +

s22
(1�B)

1CA ; (3.16)

where Gn1+n2�2
is the cdf of the t-distribution with n1 + n2 � 2 degrees of

freedom and the expectation is taken with respect to the beta random variable
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B. The test based on this p-value is referred to as the generalized t-test. Apart
from being a one dimensional integration, this representation of the p-value
has further advantages. In particular, it has a form similar to that of the
classical F -test, and the integration that is over the [0,1] interval as opposed
to the [0,1) interval is better behaved.
The counterpart of the p-value in interval estimation can be deduced di-

rectly from the p-value itself or derived from the test variable de�ned by (3.13).
It is easily seen that the 100
% left-sided generalized con�dence interval and
the 100
% equal-tail generalized con�dence interval obtained in this manner
are of the form

� � (y1 � y2)� c
(s21; s22) (3.17)

and h
(y1 � y2)� c 1+


2
(s21; s

2
2) � � � (y1 � y2) + c 1+


2
(s21; s

2
2)
i
; (3.18)

respectively, where c�(s21; s
2
2) is the solution of the equation

EG
n1+n2�2

(c�

vuutn1 + n2 � 2
s21
B +

s22
(1�B)

) = � , (3.19)

where the expectation is taken with respect to the Beta random variable B.
Akahira (1999) provided a formula for actual size of con�dence intervals

of above form with more general c(s21; s
2
2) having the property c(ks

2
1; ks

2
2) =p

kc(s21; s
2
2) for positive real number k. For example, the actual size of con�-

dence intervals of the form (3.17), in terms of � = �21=n1
�21=n1+�

2
2=n2

is given by

p(�) = Pr((Y 1 � Y 2)� c(S21 ; S22) � �)
= EG

n1+n2�2
(
p
n1 + n2 � 2c(�B; (1� �)(1�B))) . (3.20)

Akahira (1999) discussed some simple functions c(s21; s
2
2), which ensured the

con�dence level; i.e., p(�) � 
 for all � 2 (0; 1). According to empirical
results, c(s21; s

2
2) given by (3.19) also satis�es the desired property p(�) � 
.

This means that, while the above intervals are exact generalized con�dence
intervals, they also preserve the con�dence level in the classical sense; i.e.,
the actual level of generalized con�dence intervals is at least as large as the
intended level.

Example 2.2. Testing the e¤ectiveness of a promotional campaign (contin-
ued)

Recall that in Example 2.1, in order to apply the classical t-test we had to
make the assumption that the variances of change in log sales data are the
same for the test stores and the control stores. The estimated variances of 2.80
and 0.99 suggest that the assumption is not a reasonable one. Now we are in
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a position to test the hypotheses of interest without making any assumption
on the variances. The p-value for testing the null hypothesis H0 : �t � �c � 0
as given by (3.19) is 0.046. This p-value also allows us to reject the null hy-
pothesis at the 0:05 level. The advantage of this p-value is that we can come
to the same conclusion without relying on an unreasonable assumption. The
equal-tail con�dence interval for � = �t � �c in the unequal variances case is
[-0.2297 , 2.69 ], suggesting that the result is not signi�cant if the hypothesis
is formulated as H0 : �t � �c = 0. In this type of applications, the length
of the con�dence interval can be tightened and hence the type I error can be
further reduced by taking a larger sample of control stores.

3.4 ONE-WAY ANOVA

Now we are in a position to undertake the simplest case of ANOVA where we
have k univariate populations to compare. The populations will be sometimes
referred to as the treatment groups. As in the previous section, the population
means are the quantities of primary interest. The means of the populations
are not necessarily equal, and the problem of primary interest is to test the
equality of the means. For a related problem of making inferences about
the common mean of several normal populations, the reader is referred to
Krishnamoorthy and Lu (2003).
In testing the equality of several means, it is tempting to carry out pairwise

comparisons based on results from the previous section. The main drawback
of this approach is that it will seriously increase the chance of rejecting the
hypothesis of equal means even when it is true. In fact if one performs a large
number of pairwise comparisons, say at the 0:05 level, the chances are that
some di¤erences will come out to be signi�cant even when the true means
are all equal. For example, consider the problem of comparing means of four
populations. If we are to test the hypothesis that all four means are equal
by pairwise comparison of means, we will have to run a sequence of tests on
each of the six possible pairs of means. If we perform each test at �xed size
0.05, the size of the combined test will be considerably larger than 0.05. The
larger the numbers of populations being compared, the greater the chance of
making such misleading conclusions. The point is that, when we perform a
large number of comparisons, the chance of observing a pair of signi�cantly
di¤erent sample means can be fairly large even when there are no di¤erences
in the population means. Therefore, even though the ultimate goal might be
to identify the population with the largest signi�cant mean, the hypothesis
of equal means should be �rst tested by a single testing procedure that takes
advantage of all the information in the data.
Suppose we have a sample of size ni from Population i. Let Yi1; Yi2,: : : ; Yini

denote the sample of data available from ith population. Sometimes the
random variable Y will be referred to as the response variable. Let �i be
the mean of the ith population and let �2i be its variance. Assume further
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that each population is normally distributed so that Yij � N(0; �2i ). The
underlying linear model can also be written as

Yij = �i + �ij ; (3.21)

i = 1; : : : ; k; j = 1; : : : ; ni;

where �ij is a residual term distributed as

�ij � N(0; �2i ): (3.22)

Now the problem is to compare the �i�s appearing in (3.21) based on the
sample data. Before we do pairwise comparisons or inferences on any other
function of the means, it is important that �rst we do one test to see whether
or not the means are di¤erent at all. That is, we need to test whether or not
we have su¢ cient evidence to reject the null hypothesis that population means
are all equal. More speci�cally, the problem is to test the null hypothesis

H0 : �1 = �2 = � � � = �k (3.23)

against the alternative H1 : not all the population means are equal. If the
null hypothesis can be rejected at a small risk of making a wrong conclusion,
which is also known as the false positive error or Type I error, the di¤erences
in means are said to be statistically signi�cant. It is important that �rst we
establish the statistical signi�cance of the di¤erence in means, because when
we go about doing various multiple comparisons, the larger the number of
comparisons we do, the greater the false positive error we will commit.
It follows from one sample inference, or is easily seen directly from the

likelihood function, that the maximum likelihood estimates (abbreviated as
MLE) of the means and the variances are the sample means and variances
given by

b�i = Y i
=

niP
j=1

Yij

ni
(3.24)

and

b�2i = S2i
=

niP
j=1

(Yij � Y i)

ni
; (3.25)

respectively. Unlike the MLE �i, the MLE of �
2
i is not quite unbiased in the

classical sense, but eS2i = niP
j=1

(Yij � Y i)=(ni � 1) is unbiased. It is also known

from one sample inference that the distributions of MLEs are given by
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Y i � N(�i;
�2i
ni
) (3.26)

and
ni S

2
i =�

2
i � �2ni �1; (3.27)

respectively. Moreover, the statistics Y i and S2i are independently distributed
and they are su¢ cient for making inferences about all unknown parameters of
the problem. Yet, testing the null hypothesis (3.23) based on these su¢ cient
statistics is not a trivial matter.

3.4.1 Case of equal variances

In the classical treatment of the above statistical problem, it is assumed that
the population variances are all equal, an assumption made for simplicity
and mathematical tractability of the classical approach to solving problems of
hypotheses testing. It is not really a natural assumption. In fact, it is often
seen in real-world applications that the variances tend to be substantially
di¤erent especially when the means are substantially di¤erent. It has also
been observed that the assumption of equal variances is much more serious
than the assumption of normally distributed populations, in that the former
has greater chance of leading to wrong conclusions. It should also be pointed
out that in most applications, despite a common belief, it is not possible
to transform data to achieve the approximate normality and equal variances
simultaneously.
Nevertheless, there are situations where the variances are not very di¤erent

to impact the false positive error or the power of a test. Moreover, �rst tackling
the simpler problem will give us insight into the approach that we could take
in handing the more di¢ cult problem posed by unequal variances. So, let
us �rst consider the problem of testing (3.23) when all the populations have
a common variance, say �2. In this case (3.26) and (3.27) imply that the
random variables

Y i � N(�i;
�2

ni
); i = 1; : : : ; k

and
kX
i=1

ni S
2
i =�

2 =
kX
i=1

niX
j=1

(Yij � Y i)2=�2 � �2N � k; (3.28)

are independently distributed, where N =
kP
i=1

ni. De�ne

SE =
kX
i=1

niX
j=1

(Yij � Y i)2;
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an important statistic, which we will refer to as the error sum of squares or
within group sum of squares. It follows from (3.28), or is seen directly from

E(SE) =
kX
i=1

niE(S
2
i ) = (N � k)�2;

that

MSE =
SE

N � k
(3.29)

is an unbiased estimator of the error variance �2.
In ANOVA, the decomposition of the total sum of squares,

ST =
kX
i=1

niX
j=1

(Yij � Y )2;

into independent components will prove to be insightful and helpful in deriving
appropriate statistical tests for a variety of linear models we will encounter
in the following chapters including the analysis of repeated measures. The
decomposition in the present problem is

kX
i=1

niX
j=1

(Yij � Y )2 =
kX
i=1

niX
j=1

(Yij � Y i)2 +
kX
i=1

ni(Y i � Y )2; (3.30)

which is an implication of the identity,

Yij � Y i = (Yij � Y i) + (Y i � Y ):

The sum of squares,

SB =
kX
i=1

ni(Y i � Y )2; (3.31)

is referred to as the between group sums of squares. Sometimes it is also called
the among group sum of squares. In terms of the foregoing sums of squares,
the total sum of squares can be expressed as

ST = SB + SE : (3.32)

In various types of ANOVA we will encounter in the development below and
in the following chapters, the sums of squares of this nature, and the decom-
position of total sum of squares into a number of components as in (3.32) will
play an important role in the analysis.

Example 2.3. Comparing the mean strength of reinforcing bars

An engineer at a construction company wishes to compare four brands of
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Table 3.3 Strength of four brands of reinforcing bars

Brand A 21.4, 13.5, 21.1, 13.3, 18.9,19.2, 18.3
Brand B 27.3, 22.3, 16.9, 11.3, 26.3, 19.8, 16.2, 25.4
Brand C 18.7, 19.1, 16.4, 15.9, 18.7, 20.1, 17.8
Brand D 19.9, 19.3, 18.7, 20.3, 22.8, 20.8, 20.9,23.6, 21.2

reinforcing bars for their strength. The four brands of reinforcing bars were
tested for their strength, and results were reported in Table 2.3 in certain
units.
In this example the strength of reinforcing bars is the variable of interest.

The problem is to compare the strengths of brands in terms of mean values of
this variable. Table 2.4 displays the summary statistics, namely the sample
sizes, sample means, and sample standard deviations computed from the data.

Table 3.4 Sample statistics

Population ni yi: si

Brand A 7 17.96 3.07
Brand B 8 20.68 5.28
Brand C 7 18.10 1.39
Brand D 9 20.83 1.48

In this application, the number of populations being compared is k = 4
and the total sample size is N = 31. By applying the above equations, the
error sum of squares and the between sum of squares can be computed using
the information given in Table 2.2 as sE = 322:526 and sB = 57:638,
respectively. The total sum of squares is then sT = sE + sB = 380:164.
To establish procedures for testing the null hypothesis H0, note that the

expected value SB can be expressed as

E(SB) = E(
kX
i=1

ni(Y i � Y )2)

= E

kX
i=1

ni ((�i � �) + (�i � �))
2

=
kX
i=1

ni(�i � �)2 + (k � 1)�2; (3.33)
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where � =
kP
i=1

ni�i=N . Hence, depending on H0 is true or not, the expected

value of the mean between group sum of squares

MSB =
SB
k � 1 (3.34)

is equal to the error variance �2 or greater than �2. The larger the discrepancy
between the means, the greater the deviation of the expected value from �2

tends to be. The results (3.29) and (3.34) provide a basis for deriving an
unbiased test of H0. To compute the p-value of the resulting test, we also
need the distributions of SE and SB . From (3.28), it is evident that the error
sum of squares SE is related to the chi-squared distribution

SE=�
2 � �2N � k;

whereas from (3.33) and from results known for one sample inference we can
deduce that the between group sum of squares s SB is related to the non-
central chi-squared distribution

SB=�
2 � �2N � k(�);

where � =
kP
i=1

ni(�i��)2=((k�1)�2) is the noncentrality parameter, a quantity

that becomes 0 under H0; thus reducing the above distribution to a central
chi-squared distribution. The results can also be derived from (3.30) and the
properties of the normal distribution. Moreover, (3.30) implies that these
statistics are independently distributed. Hence, under H0, we have

F =
SB=(k � 1)
SE=(N � k) � Fk�1;N�k: (3.35)

This means that under the null hypothesis the ratio of the two mean sums
of squares has an F distribution with k � 1 and N � k degrees of freedom
(abbreviated as DF). If the null hypothesis is not true, then the distribution
is a noncentral F distribution with k � 1 and N � k degrees of freedom and
noncentrality parameter �. That is, under H1,

F � Fk�1;N�k(�):

This means that the greater the deviation of the individual means from one
another, the larger the F-statistic tends to be. On the other hand, the left-tail
probabilities corresponding to the observed value of F would take small values
under H1 than under H0, thus suggesting the rejection of the null hypothesis
for smaller values of such tail probabilities. Hence, the left-tail probabilities
of the F distribution can be used to base unbiased tests for H0.
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The p-value of the F -test suggested by the above observations can be com-
puted as

p = Pr(
SB=(k � 1)
SE=(N � k) �

sB=(k � 1)
sE=(N � k) )

= 1�Hk�1;N�k(
sB=(k � 1)
sE=(N � k) ); (3.36)

where sB and sE are the observed values of the sums of squares SB and SE ,
respectively, andHk�1;N�k is the cumulative distribution function (cdf) of the
F distribution with k� 1 and N � k degrees of freedom. The null hypothesis
is rejected for small values of p, say p < 0:05; in testing at the �xed-level 0.05.
In ANOVA, it is customary and insightful to set out various quantities

leading to this F -statistic in an Analysis of Variance Table as displayed below
in Table 2.5. In the ANOVA table, the sum of squares and the mean sums of
squares columns are abbreviated as SS and MS, respectively.

Table 3.5 ANOVA table

Source DF SS MS F -Statistic

Between Groups k � 1 SB SB=(k � 1) MSB/MSE
Error N � k SE SE=(N � k)
Total N � 1 ST

Example 2.4. Comparing the mean strength of reinforcing bars (continued)

Continuing from Example 2.3 let �i; i = 1; 2; 3; 4 be the mean strengths of
four brands of reinforcing bars. Consider the null hypothesis H0 : �1 = �2 =
�3 = �4. Assume that the variances of the strength distribution for the four
brands are equal. We can apply the foregoing results to test whether or not
the data in Table 2.3 supports the null hypothesis. Using the sums of squares
(SS) computed in Example 2.3, we can compute the mean sums of squares
(MS) and the F -statistic. The resulting ANOVA table is displayed in Table
2.6.
Under the assumption of equal error variances we can use the F -test to

compare the four brands. The 95th percentile of the F distribution with 3
and 27 degrees of freedom is 2.96. Therefore, the null hypothesis of equal
means cannot be rejected at the 0.05 level. The p-value computed from 3.35
is p = 1 � H3;27(1:6084) = 0:211; which leads us to conclude that the data
does not provide su¢ cient evidence to doubt the null hypothesis H0. Figure
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Table 3.6 ANOVA for comparing the reinforcing bars

Source of DF SS MS F -Statistic

Between 3 57.638 19.213 1.6084
Error 27 322.526 11.945

Total 30 380.164

Figure 3.1 Error bars for the four brands

2.1 provides error bars for each of the four brands. The midpoint of each bar
represents the corresponding sample mean y; and the half-width of the bar
represents its standard error, s=

p
n. Although the distributions are not well

separated, notice that error bar of Brand D falls fairly above those of Brands
A and B suggesting that perhaps the di¤erence in means is signi�cant. Indeed
in this application, the assumption of equal variances is not reasonable and
so the above results lack credibility. Therefore, we will revisit this problem
again in the next section and try to perform the mean comparison without
that assumption.

3.4.2 Case of unequal variances

The p-value given above is valid only if the variances are equal, and the test
is not appropriate if the variances are signi�cantly di¤erent. But, in many



ONE-WAY ANOVA 55

situations this assumption is not reasonable. As demonstrated later in this
section, the classical F -test can lead to very serious repercussions if applied
when the assumption is not reasonable. There are numerous tests available
in the literature [cf. Krutchko¤ (1988, 1989)] that do not rely on the assump-
tion of equal variances. Here we con�ne our attention only to those tests that
are based on an exact probability statements and su¢ cient statistics. Weera-
handi (1994) generalized the F -test to be valid for the unequal variances case,
and he argued that it is also equivalent to the test given by Rice and Gains
(1989), who extended an argument due to Bernard (1984). The particular
representation of the test introduced by Weerahandi (1994) is referred to as
the generalized F -test.

3.4.3 Substitution method in ANOVA

Finding generalized tests in ANOVA problems can also be accomplished by a
variation of the substitution method introduced in Chapter 1. This approach
requires that a test is available from the classical theory for the case of known
nuisance parameters (usually the unknown variances), say (�1; �2; : : : ; �k);
. It also requires that the nuisance parameters can be expressed in terms
of a set of su¢ cient statistics (X1; X2; : : : ; Xk) and a set random variables
(V1; V2; : : : ; Vk) with distributions free of unknown parameters. Though de-
sirable, it is not necessary that these random variables are mutually indepen-
dent. However, their joint distribution is assumed to be known. Then the
substitution method is carried out in the following steps:

� From the classical ANOVA, obtain the test statistic (usually a between
group sum of squares), say S(�1; �2; : : : ; �k); that is unbiased for test-
ing the null hypothesis of interest when the nuisance parameters are
known. Suppose it tends to take larger values for deviations from the
null hypothesis.

� Express the nuisance parameters (�1; �2; : : : ; �k) in terms of the su¢ -
cient statistics (X1; X2; : : : ; Xk) and the random variables

V = (V1; V2; : : : ; Vk):

� Replace the statistics X = (X1; X2; : : : ; Xk) by their observed values
x = (x1; x2; : : : ; xk) and de�ne a generalized test variable T as

T = S(�1; �2; : : : ; �k)� s(V;x);

where s is the observed value of S.

� Show that fT � 0g is a proper generalized extreme region.

� Compute the generalized p-value as the probability of the generalized
extreme region.
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To present the generalized F -test in One-Way ANOVA under unequal vari-
ances, consider again the null hypothesis

H0 : �1 = �2 = � � � = �k

under the weaker assumptions,

Yij = �i + �ij ; (3.37)

where �ij � N(0; �2i ); i = 1; : : : ; k; j = 1; : : : ; ni;

where �2i are the variances of the populations. In view of (3.31), de�ne the
standardized between group sum of squares

eSB = eSB(�21; : : : ; �2k) = kX
i=1

ni
�2i
( Y i � Y �)2 ; (3.38)

where

Y � =

kP
i=1

niY i=�
2
i

kP
i=1

ni=�2i

:

This is the between group sum of squares that we would have used to derive
a test for H0 if the variances were known. Under the null hypothesis of equal
means we have eSB � �2k�1: (3.39)

The substitution method allows us to use this quantity to obtain testing pro-
cedures when the variances are unknown. This is possible because chi-squared
distributions

Yi = niS
2
i =�

2
i � �2ni�1 (3.40)

relate them to the observable su¢ cient statistics. The substitution approach
indicates that the appropriate procedure is to replace �2i by nis

2
i =Yi and then

construct the extreme region. Let esB be the observed value of eSB obtained by
replacing �2i by nis

2
i =Yi; i = 1; : : : ; k. This amounts to using the well-de�ned

extreme region �
YjeSB(�21; : : : ; �2k) � esB( s21S21 �21; : : : ; s

2
k

S2k
�2k)

�
:

Notice that the probability of this subset of the sample space increases for
any deviation from the null hypothesis and that the observed sample point
falls on the boundary of the subset. Hence, the p-value for testing the null
hypothesis of equal means can be obtained as
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p = Pr(eSB � esB(n1s21
Y1

;
n2s

2
2

Y2
; : : : ;

nks
2
k

Yk
)

= 1� EGk�1(esB(n1s21
Y1

;
n2s

2
2

Y2
; : : : ;

nks
2
k

Yk
)); (3.41)

where Gk�1 is the cdf of the chi-squared distribution with k � 1 degrees of
freedom and the expectation is taken with respect to the independent Yi
random variables. The p-value serves to measure the evidence in favor of
H0. The p-value given by (3.41) does not quite have the form of the classical
F -test. However, by change of variables (see Appendix for a derivation) the
p-value can be expressed to take the form of a generalized F -test as

p = 1 � E(Hk�1;N�k(
N � k
k � 1 esB [ n1s

2
1

B1B2 � � �Bk�1
;

n2s
2
2

(1�B1)B2 � � �Bk�1
;

n3s
2
3

(1�B2)B3 � � �Bk�1
; : : : ;

nks
2
k

(1�Bk�1)
])); (3.42)

where Hk�1;N�k is the cdf of F distribution with k� 1 and N � k degrees of
freedom, and the expectation is taken with respect to the independent Beta
variables

Bj � Beta(
jX
i=1

(ni � 1)
2

;
nj+1 � 1

2
); j = 1; 2; : : : ; k � 1: (3.43)

Being an average of familiar F probabilities, not only is this representation of
the generalized p-value more appealing, but also it is computationally more
e¢ cient in exact numerical integration.
If the number of treatments being compared is very large, the expectation

in (3.41) or (3.42) can also be well approximated by a Monte Carlo method.
In this case perhaps the representation (3.41) is more convenient. The com-
putation using the representation (3.41) is carried out in the following steps:

� Generate a set of large number of random numbers from each chi-squared
random variable Yi � �2ni�1,

� For each set compute the cdf g = Gk�1(esB(n1s21Y1
;
n2s

2
2

Y2
; : : : ;

nks
2
k

Yk
),

� Compute their average, say g,

� Estimate the generalized p-value by 1� g.

The accuracy of the approximation can also be assessed. For example, if the
sample (simulated) standard deviation of g values is sg, then with probability
0.999, the estimated p-value is accurate up to about 3sg=

p
L, where L is the
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number of simulated sample sets. Both the exact numerical integration and
the Monte Carlo procedure are available from the one-way ANOVA tools of
the XPro software package. With a little coding to implement (3.41) or (3.42),
the computation can also be performed with widely used software packages
such as SAS and SPlus.
In generalized �xed-level testing at level �, H0 is rejected if p < �. In

signi�cance testing, the generalized p-value computed using (3.41) or (3.42)
provides an exact unbiased test based on su¢ cient statistics. Exact conven-
tional �xed-level tests based on su¢ cient statistics do not exist. In this case, as
demonstrated by Gamage and Weerahandi (1998), the generalized F -test pro-
vides an excellent approximate test and its size does not exceed the intended
value of �. Therefore, the generalized F -test is extremely useful regardless
of whether one prefers conventional �xed-level testing or signi�cance testing
based on p-values.
For the problem of comparing two normal populations, the test given by

the generalized approach is unique (up to equivalent p-values) among all a¢ ne
invariant and unbiased procedures based on minimal su¢ cient statistics. In
view of the results in Khuri and Littell (1987), Khuri (1990), and Zhou and
Mathew (1994), however, the uniqueness of the test is not expected beyond
the case of two means, unless further conditions are imposed.
Also note that, for large sample sizes, the degenerated beta random vari-

ables give rise to the same p-value as the one implied by (3.35) for the case
of known error variances. That the p-value given by (3.42) is symmetric with
respect to the population indices is clear from the form (3.41), which is equiv-
alent to (3.42). In other words, we will get the same p-value irrespective of
how the treatments are indexed.

Example 2.5. Comparing the mean strength of reinforcing bars (continued)

Consider again the data in Table 2.3 and the summary statistics in Table 2.4.
Recall that in Example 2.4 we concluded that there is no su¢ cient evidence
to reject the null hypothesis that the mean strengths of the four brands are
equal. Let us now drop the assumption of equal error variances and retest the
hypothesis. In this application the p-value given by (3.42) reduces to
p = 1 � E(H3;27(9esB [ 7�9:41B1B2B3

; 8�27:93
(1�B1)B2B3

; 7�1:93
(1�B2)B3

; 9�2:19(1�B3)
])) = 0.021,

where the expectation is taken with respect to the beta random de variables
B1 � Beta(3; 3:5); B2 � Beta(6:5; 3) and B3 � Beta(9:5; 4). This means
that although the classical F -test failed to detect the statistical signi�cance,
the current data set does provide fairly strong evidence to conclude that the
observed di¤erences of the mean strengths of the four brands of reinforcing
bars are actually signi�cant and cannot be attributed to just the sampling
variation. Therefore, the engineer can proceed with multiple comparisons
and deal with hypotheses concerning absolute di¤erences in mean yields.
Recall that the p-value given by the classical F -test was 0.211, which is ten

times as large as the p-value given by the generalized F -test. This means that



MULTIPLE COMPARISONS: CASE OF EQUAL VARIANCES 59

when the assumption of equal variances is not reasonable, the test given by
(3.42) is much more powerful than the test given by (3.36). The failure of the
classical F -test to detect truly signi�cant mean di¤erences is considered very
serious. In this example by applying the classical F -test the engineer would
have concluded that there is no di¤erence in the four brands and would have
recommended the use of perhaps a cheap brand, which could have been the
worst brand in terms of strength.
This example demonstrates the importance of avoiding unreasonable as-

sumptions which are made for mathematical simplicity. This is especially
true in biomedical experiments where one does not usually get large samples
and cannot a¤ord to resort to less e¢ cient statistical procedures for the sake
of simplicity. It should also be noted that assumption of equal variances can
lead to misleading conclusions even with fairly large samples. In fact, the
assumption of equal variances is much more serious than the assumption of
normality, because F -tests including the generalized F -test are robust against
the distributional assumption. When the sample variances indicate that the
assumption of equal variances is not reasonable, use of the generalized F -test
can prove to be a win�win situation because not only does it depend on
milder assumptions, but also it can be substantially more powerful than the
classical F -test. Therefore, the classical F -test is recommended only when the
assumption of equal variances is very reasonable. For various procedures for
testing the assumption of equal variances, the reader is referred to Weerahandi
(1995).
For various simulation studies concerning the power and the size of the gen-

eralized F -test compared with the classical F -test and some other approximate
tests, the reader is referred to Gamage and Weerahandi (1998). Anderson and
McLean (1974) provide and in-depth investigation of the performance of the
classical F -test. According to results in Gamage and Weerahandi (1998), the
actual size of the generalized F -test tends to be as good as or better than
most approximate tests available in the literature. It has the added advan-
tage that its p-value is the exact probability of an extreme region of the sample
space. Moreover, as Weerahandi and Tsui (1996) demonstrated, the p-value
is numerically equivalent to a Bayesian posterior predictive p-value [cf. Meng
(1994)], a property that no other competing test has.

3.5 MULTIPLE COMPARISONS: CASE OF EQUAL VARIANCES

Foregoing results allow us to test only the equality of all population means.
In many applications, the problem is not completely solved yet. Suppose a
certain hypothesis of equal treatment means has been rejected at a desired
nominal level and we still need to identify the means which are signi�cantly
di¤erent from others. One can of course carry out a set of pairwise compar-
isons. Although the concerns about the Type I error of pairwise comparisons
expressed in the introduction of this chapter still hold, the issue is no longer
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very serious since the null hypothesis has already been rejected. In any event,
the appropriate procedure to carry out multiple comparisons depends on the
way we want to control the Type I error. For a discussion on various pre-
planned and post-hoc procedures valid under di¤erent control conditions, the
reader is referred to Woolson (1987). Here we outline some of the procedures
available for controlling the error rate for (1) a few pre-planned experiments,
(2) all possible pairwise comparisons of means, and (3) all possible linear
combinations of means, in which Type I error is on a per-experiment basis.

3.5.1 Bonferroni method

First consider the problem of making some pre-planned comparisons. To be
speci�c suppose we wish to carry out some pairwise comparisons. In making
just one comparison when variances are equal, we can employ the results
in Section 2.2. When the population variances are all equal, the common
variance can be estimated as in (3.29). Let S2 = SE=(N � k) be the
unbiased estimator. The distribution of the random variable S2 is given by

(N � k)S2
�2

� �2N�k:

Inferences on any pair of the means can be made by taking the approach in
the two sample problem treated above. For example, inferences on � = �1��2
can be made based on the result

Y 1 � Y 2 � �
S
q

1
n1
+ 1

n2

� tN�k:

For instance, one-sided hypotheses of two means, say H0 : �1 � �2 � �; can
thus be tested on the basis of the p-value

p = 1� GN�k(
y1 � y2 � �

s
p
(1=n1 + 1=n2)

); (3.44)

where GN�k is the cdf of the Student�s t distribution with N � k degrees
of freedom. The p-value for testing two-sided hypotheses of the form H0 :
�1 � �2 = � can be obtained in a similar manner as

p = 2G
N�k(�

jy1 � y2 � �j
s
p
(1=n1 + 1=n2)

): (3.45)

At �xed-level �, the null hypothesis is rejected if p < �.
Now suppose we wish to carry out r number of such comparisons. Then,

the Bonferroni procedure is to use signi�cance level �=r in place of � in �xed-
level testing. In other words, each hypothesis is rejected at the � level if its
p-value is less than �=r. The Bonferroni procedure is very general in that
it can be applied for any situation where we have a procedure for testing a
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single test. The procedure ensures the size of combined tests to be no larger
than �. Obviously this procedure would become conservative as r increases.

Example 2.6. Pairwise comparisons

To illustrate the procedure, consider the set of summary data given in Table
2.7 for comparing four treatments P, Q, R, and S. Shown in the three columns
of the table are the sample sizes, the sample means, and the sample variances
(MLEs of variances), respectively.

Table 3.7 Treatment statistics

Treatment ni Y i s2i

P 10 23.7 2.4
Q 15 24.5 8.9
R 20 23.3 1.6
S 15 21.2 2.8

The sum of squares and the F -Statistic computed from the summary data in
Table 2.7 are given in Table 2.8.

Table 3.8 ANOVA for comparing the treatments

Source DF SS MS F -Statistic

Between 3 87.8 29.3 7.08
Error 56 231.5 4.13

Total 59 319.4

The observed p-value that follows from the F -test in the ANOVA table is
0.0004, and therefore we have very strong evidence to reject the hypothesis of
equal means. Now suppose we need to establish the signi�cance of possible
di¤erences in means between R and S, Q and R, and Q and P . To perform
the pairwise comparisons, consider the hypotheses �R = �S , �Q = �P , and
�Q = �R. Let us carry out these tests at 0:05=3 = 0:017 level to ensure that
the size of the combined test is less than the desired level 0.05. By applying
(3.44) it is seen that the p-value for testing the three hypotheses are 0.0037,
0.3393, 0.0895, respectively. Hence, we can conclude at the 0.05 Type I error
level that, the mean of Treatment R is greater than that of treatment S, but
the di¤erence in means between Q and P or Q and R are not quite statistically
signi�cant.
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3.5.2 Sche�e method

The Bonferroni method ensures Type I error for the pre-planned multiple
comparisons only. A procedure that ensures Type I error for any number of
post-hoc comparisons of linear contrasts was introduced by Sche¤e (1953). A

linear contrast is a linear combination of the means of the form
kP
i=1

ci �i, with

the coe¢ cients of means satisfying the condition
kP
i=1

ci = 0. Sche¤e test is

closely related to the F -test developed above for testing the equality of all
means. Of all multiple comparison methods available in the literature, the
Sche¤e test has the advantage that it detects one or more signi�cant linear
contrasts if and only if the F -test is signi�cant. Its main disadvantage is that
even if we are interested only in some contrasts, the test ensures the size for all
possible contrasts, and hence tends to be less powerful in detecting signi�cant
contrasts.
For details of the Sche¤e test including derivations, the reader is referred

to Sche¤e (1953) and Weerahandi (1995). To brie�y describe the testing
procedure, consider the null hypothesis

H0 :
kX
i=1

ci �i = 0 for all ci such that
kX
i=1

ci = 0: (3.46)

Then Sche¤e showed that the null hypothesis all zero contrasts can be tested
on the basis of the p-value

p = 1 � Hk�1;N�k(
N � k
k � 1

(
kP
i=1

ciyi)
2

sE
kP
i=1

c2i =ni

): (3.47)

A set of 100
% simultaneous con�dence intervals for the linear contrasts is
given by

kX
i=1

ciyi � g �
kX
i=1

ci�i �
kX
i=1

ciyi + g ; (3.48)

where

g2 = (k � 1)b�2( kX
i=1

c2i =ni)Fk�1;N�k; (3.49)

b�2 = kP
i=1

niP
j=1

(Yij � Y i)2=(N � k); and Fk�1;N�k is the 
th quantile of the

F distribution with k � 1 and N � k degrees of freedom. In testing a few
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contrasts, the length of the con�dence interval given by (3.48) can be much
larger than the 100
% con�dence interval given by Bonferroni method.

Example 2.7. Pairwise comparisons (continued)

Consider again the data in Table 2.7 concerning the problem of comparing
four treatments. In the previous subsection we tested the hypotheses �R =
�S , �Q = �P , and �Q = �R by the Bonferroni method. To test the same
hypothesis by the Sche¤e method, we need to apply (3.47) repeatedly with
contrasts, c = (0; 0; 1;�1); (1;�1; 0; 0); and (0; 1;�1; 0), respectively. The
resulting p-values for testing the three hypothesis are 0.0360, 0.9289, 0.1801,
respectively. Thus we come to the same conclusion that only the �rst contrast
is signi�cantly di¤erent from zero. Notice that all thee p-values are much
larger than before, indicating the lack of power of the Sche¤e test. This
is true even after the necessary size adjustment required by the Bonferroni
test. To see this, suppose we were to test the hypotheses at the 0.02 level of
signi�cance. Then none of the hypotheses can be rejected by the Sche¤e test,
whereas the �rst hypothesis is still rejected by the Bonferroni method because
0:0037 < 0:02=3:

3.5.3 Generalized Tukey�Kramer method under equal variances
This is a procedure for controlling the Type I error rate for all possible pair-
wise mean comparisons as opposed to all possible contrasts. It is indeed the
case in many applications that we really need to make only pairwise com-
parisons. In situations where only pairwise multiple comparisons are needed,
the Tukey-Kramer procedure would produce more powerful tests compared
to the Sche¤e procedure. Original results due to Tukey (1953) in this context
are valid only for the case of equal sample sizes. Kramer (1956) provided an
extension to the case of unequal sample sizes. However, Kramer�s extension
was too conservative and hence there were a number of attempts to extend
the Tukey�Kramer results. Of particular interest is a natural generaliza-
tion of Tukey�Kramer procedure presented by Hsu (1995). Here we take the
approach of Chang, Huang, and Wong (2002) and present the generalized
Tukey�Kramer procedure by taking the generalized p-value approach.
Consider the problem of constructing simultaneous con�dence intervals for

�ij = �i � �i for all i 6= j. Chang, Huang, and Wong (2002) showed that

(yi � yj)� ��ij � �ij � (yi � yj) + ��ij (3.50)

provides a set of 100
% simultaneous con�dence intervals for the mean di¤er-
ences �ij , where

�ij =

(
(N � k)b�2
N � k � 2

�
1

ni
+
1

nj

�)1=2
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and � is the solution of the equation

kX
i=1

E

 
�
i 6=j

"
�

�r
nj
ni
Z

�
� �

 r
nj
ni
Z �

s
njV

(N � k)b�2 ��ij
!#!

= 
 ,

where � is the cumulative distribution function of standard normal distribu-
tion and the expectation is taken with respect to the normal and chi-squared
random variables

Z � N(0; 1) and V � �2N�k:

Hypotheses of equal means are rejected at � level if the 100(1��)% con�dence
intervals do not contain them.
For a simple derivation of this procedure, the reader is referred to Chang,

Huang, and Wong (2002). Their derivation provides an example of how very
complicated inference procedures by classical approach could be derived by a
few simple arguments in the context of generalized inference. The simultane-
ous con�dence intervals given by (3.50) is equivalent to that of Hsu (1995).
The above representation has the advantage that it naturally extends to the
case of unequal variances. Moreover, under the usual noninformative prior, it
is numerically equivalent to the Bayesian credible region.

3.6 MULTIPLE COMPARISONS: CASE OF UNEQUAL VARIANCES

We assumed in the previous section that the variances of all the populations
being compared are equal. This assumptions tends to be unreasonable es-
pecially when the population means being compared are unequal. As brie�y
discussed below, the generalized approach allows us to extend each of the
three methods discussed above to the case of unequal variances.

3.6.1 Generalized Bonferroni method

Note �rst of all that if the variances are not assumed equal, the generalized
t-test developed in Section 2.2 can be employed to make inferences about
the di¤erence of one pair of the means. In this case, since no additional
information about the variances are available, the procedure remains the same,
and the p-values are computed exactly the same way as in the two sample
case. In other words, we can still apply (3.19) if there were only one pre-
planned pair-wise comparison. When we need to carry out r number of such
comparisons, we simply apply the generalized t-test with the Bonferroni size
adjustment; that is, we compute the p-value using the same formula and
perform each generalized t-test with the signi�cance level �=r in place of
�. That is, if p is the p-value obtained using formula (3.19) for comparing
a certain pair of means, then the underlying null hypothesis is rejected if
p < �=r.
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Example 2.8. Pairwise comparisons (continued)

Continuing with the numerical example used in the case of equal variances,
consider again the hypotheses �R = �S , �Q = �P , and �Q = �R without the
assumption of equal variances. If we compute the p-values by applying the
generalized t-tests, we get the p-values 0.0009, 0.4271, 0.1801, respectively for
the three hypotheses. Comparing these p�values with adjusted level of 0.017,
we come to the same conclusion that only the mean di¤erence of Treatments
R and S are signi�cant. In fact, the p-value for testing the di¤erence in R
and S is less than before, indicating that the generalized t-test is somewhat
more powerful than the classical t-test due to unequal variances. Of course
this is not always the case and one should not expect to see smaller p-values
whenever the means are truly di¤erent and the variances are unequal. In fact,
unlike the F -test in ANOVA, the lack of power of the two sample t-test is not
very serious.

3.6.2 Generalized Sche�e method

Now consider the problem of ensuring Type I error for all possible linear con-
trasts when the variances are not necessarily equal. This can be accomplished
by considering the standardized observations eYij = Yij=�i; i = 1; : : : ; k; j =
1; : : : ; ni, de�ning a test variable parallel to the one used in the derivation of

the generalized F -test in terms of
kP
i=1

ciY i. Weerahandi (1994) showed that

the p-value appropriate for testing (3.46) is given by

p = 1 � E(Hk�1;N�k(
N � k
k � 1

(
kP
i=1

ciyi)
2

kP
i=1

c2i s
2
i =Ui

)); (3.51)

where the expectation is taken with respect to the random variables

Ui = (1�Bi�1)Bi � � �Bk�1; i = 2; : : : ; k � 1;

U1 = B1B2 � � �Bk�1 and Uk = (1�Bk�1);
where Bi; i = 1; : : : ; k�1 are the beta variables de�ned by (3.43). A test based
on this p-value is referred to as the generalized Sche¤e test. The statistical
software package XPro provides tools to obtain the p-value for the generalized
Sche¤e test as well as for the conventional Sche¤e test.

Example 2.9. Testing of contrasts

Consider again the data in Table 2.7. Suppose among other multiple compar-
isons of interest we need to test the hypothesis,

H0 : �P + �R = �Q + �S :
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If the Sche¤e test had been used to perform all prior comparisons, we can
proceed to test this hypotheses with no concern about the overall Type I
error due to multiple comparisons. The current hypothesis is represented by
the contrast given by c1 = 1 , c2 = �1; c3 = 1; and c4 = �1. The p�values,
for testing this contrast obtained with and without the assumption of equal
variances, obtained by applying (3.47) and (3.51) are, 0.9982 and 0.9993,
respectively. Both p-values suggest that there is no evidence against the null
hypothesis.
Simultaneous generalized con�dence intervals for contrasts of the means

can also be deduced from (3.51). A set of 100
% simultaneous con�dence
intervals for the linear contrasts obtained in this manner are

kX
i=1

ciyi � h �
kX
i=1

ci�i �
kX
i=1

ciyi + h ; (3.52)

where h is chosen such that

E(Hk�1;N�k(

(
kP
i=1

ciyi)
2

h2
kP
i=1

c2i s
2
i =Ui

)) = 
; (3.53)

where Hk�1;N�k is the cdf of the F distribution with k�1 and N �k degrees
of freedom and the expectation is taken with respect to Ui random variables.

3.6.3 Generalized Tukey�Kramer method under heteroscedasticity
The Sche¤e tests are conservative by design because they control the error rate
for all possible linear contrasts. The Bonferroni tests tend to be conservative
when the number of comparisons is large. Due to these reasons, when one
is interested only in pairwise mean comparisons, Tukey�Kramer type pro-
cedures are most desirable. Here we present the generalized Tukey�Kramer
test for the heteroscedastic variances case developed by Chang, Huang, and
Wong (2002).
Consider again the problem of constructing simultaneous con�dence inter-

vals for �ij = �i � �i for all i 6= j. Chang, Huang and Wong (2000) showed
that

(yi � yj)� �� ij � �ij � (yi � yj) + �� ij (3.54)

provides a set of 100
% con�dence intervals for the mean di¤erences �ij , where

� ij =

(
(ni � 1)s2i
ni(ni � 3)

+
(nj � 1)s2j
nj(nj � 3)

)1=2
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and � is the solution of the equation

kX
i=1

E

 
�
i 6=j

"
G

ni�1

 s
njs2i
nis2j

T

!
�G

ni�1

 s
njs2i
nis2j

T �
r
nj
s2j
�� ij

!#!
= 
 ,

where the expectation is taken with respect to the random variable distributed
as

T � t
ni�1

;

and Gni�1
is the cumulative distribution function of the t distribution with

ni � 1 degrees of freedom. Hypotheses of equal means are rejected at the �
level if the 100(1� �)% con�dence intervals do not contain them. A proof of
this result is given in the Appendix.
Chang, Huang, and Wong (2002) argued that the simultaneous con�dence

intervals given by (3.54) have the desirable property that they are numeri-
cally equivalent to Bayesian credible regions under the natural noninformative
prior. They also performed a simulation to compare the probability coverage
of (3.54) with the approximate simultaneous con�dence intervals proposed by
Dunnett (1980) and discussed the conditions under which the probability cov-
erage of one is better than the other. While they found no clear winner and
no substantial di¤erences in probability coverage in repeated sampling, the
generalized Tukey�Kramer interval has the added advantage of being based
on an exact probability statement.

3.7 TWO-WAY ANOVA UNDER EQUAL VARIANCES

Foregoing results can be easily extended to various higher way ANOVAmodels
where subjects or experimental units are observed under multiple levels of
two or more factors of classi�cation. In this book we consider only the case
of two factors. To outline the approach in extending results for the one-way
ANOVA to higher way layouts, consider the two-way layout with or without
replications. Let us �rst consider the two-way cross classi�ed designs under
the assumption that the error variances are all equal, an assumption that we
will relax in the next section.
In analyzing data from a two-way layout, suppose we are interested in the

�xed e¤ects of two factors, A and B. The case of the two-way layout with
no replicates is treated in Appendix A.2. When replications are available we
would be interested in the interactions between A and B as well their main
e¤ects. Let A1; A2; : : : ; Ak be the levels of factor A, and B1; B2; : : : ; Bn
be the levels of factor B. Distinct values of a factor are called the levels of
the factor. In most practical applications we would also have multiple data
corresponding to each combination of factor levels. Appendix A.2 provides
results for the special case where each combination of levels of A and B is
represented by a single value of data. In this section we assume that we
have replicates from each of the factor level combinations A and B. Also
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assume that we have at least two data points from each pair (Ai; Bj) of
factor levels. The number of data available from (Ai; Bj) is referred to as
the cell frequency of the (i; j)th cell. Let yijk; i = 1; : : : ; I; j = 1; : : : ; J; k =
1; : : : ; nij be the available data, where nij is the cell frequency, the number
of observations available from the factor level combination (i; j). De�ne the
vectors yij = (yij1; yij2; : : : ; yijnij ); i = 1; : : : ; I; j = 1; � � � ; J . Then, the
data can be set out just like in Table A.1 except that each yij now represents
a vector of observations.
If there is no interaction between the two factors, we can make inferences

by assuming the model given in Appendix A.2. When we have replicates as
assumed in this section, instead assume the linear model

Yijk = �ij + �ijk;

i = 1; : : : ; I; j = 1; : : : ; J; k = 1; : : : ; nij ; (3.55)

where 
ij terms represent the interactions. We assume in this section that
the error terms are normally distributed with constant variance; that is,

�ijk � N(0; �2):

The assumption of common error variance will be relaxed later. Let �ij be
mean of the random variables representing observations in the ijth cell in
Table A.1. The decomposition of �ij , namely the mean of Yijk given in (3.55),
is not unique. Widely used constraints to make the decomposition unique are
presented below under various scenarios.

3.7.1 Case of equal sample sizes

First consider the case where we have equal number of observations, say K
observations, from each cell; that is, nij = K for all i = 1; : : : ; I; j = 1; : : : ; J .
De�ne

� =

IX
i=1

JX
j=1

�ij=IJ ; �i: =

JX
j=1

�ij=J ; and �:j =
IX
i=1

�ij=I :

In terms of these parameters the model can be expressed as

Yijk = � + �i + �j + 
ij + �ijk; (3.56)

where �i = �i: � � and �j = �:j � � are the standardized main

e¤ects, respectively, due to A and B. With the constraints
IP
i=1


ij = 0 and

JP
j=1


ij = 0 we can represent interactions in terms of various means as


ij = �ij � �� �i � �j ;

for i = 1; : : : ; I and j = 1; : : : ; J:
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Consider the problems of testing the hypotheses,

H0A : �1 = �2 = � � � = �k = 0; (3.57)

H0B : �1 = �2 = � � � = �n = 0 (3.58)

and

H0AB : 
11 = 
12 = � � � = 
kn = 0 (3.59)

against the obvious alternative hypotheses.
Let Y ij = Y ij : be the sample mean of the observations available from

the factor level combination (Ai; Bj). Table 2.12, which is similar to Table
A.1, displays all the sample means obtained in this manner along with their
marginals. Shown also in the table by Y i: are the mean of all the data corre-
sponding to factor Ai. Similarly Y :j is the mean of all the data corresponding
to factor Bj . The average of observations available from all IJ cells is denoted
by Y , which is sometimes referred to as the grand mean.

Table 3.9 Sample means by factor

Levels B1 : : : Bj : : : BJ Row means

A1 y11 : : : y1j : : : y1J y1:
A2 y21 : : : y2j : : : y2J y21:
� � � � � � � � � � � � � � � � � � � � �
Ai yi1 : : : yij : : : yiJ yi:
� � � � � � � � � � � � � � � � � � � � �
AI yI1 : : : yIj : : : yIJ : yI:

Column means y:1 : : : y:j : : : y:J y

It is easily seen that the MLEs as well as the LSEs of the parameters �i,
�j , and 
ij are b�i = Y i: � Y ; b�j = Y :j � Y

and b
ij = Y ij � Y i: � Y :j + Y ;

respectively. These estimates are also unbiased.
Now proceeding to hypotheses testing, �rst consider the problem of testing

the hypothesis of zero interactions, namely H0AB . If this hypothesis is not
rejected, it is also of interest to test the equality of the main e¤ects�that is,
the null hypotheses H0A and H0B de�ned by (3.57) and (3.58), respectively.
As in the case of the two-way ANOVA with no replications, testing of various
hypotheses can be facilitated by appropriate sums of squares and the mean
sums of squares in the ANOVA table given below. The derivation of the
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results are provided in Appendix A.3. Each mean-squared term appearing in
the fourth column of the table is obtained by dividing the corresponding sum
of squares by its degrees of freedom.

Table 3.10 Two-way ANOVA for cross classi�ed design

Source DF SS MS F -Statistic

A I � 1 SA MSA MSA/MSE
B J � 1 SB MSB MSB/MSE
Interac. (I � 1)(J � 1) sI MSI MSI/MSE
Error N � IJ sE MSE

Total N � 1 sT

The de�nitions of the sums of squares appearing in the ANOVA table are
as follows:

ST =
IX
i=1

JX
j=1

KX
k=1

(Yijk � Y )2;

SA = JK
IX
i=1

(Y i: � Y )2; SB = IK
JX
j=1

(Y :j � Y )2;

SI = K

IX
i=1

JX
j=1

(Y ij � Y i: � Y :j + Y )2;

and

SE =

IX
i=1

JX
j=1

KX
k=1

(Yijk � Y ij)
2 = K

IX
i=1

JX
j=1

S2ij :

Under the hypothesis of zero e¤ects, each F -statistic has an F distribution
with the degrees of freedom suggested by the second column of the ANOVA
table. For example, if H0AB is true, then the F -statistic

FI =
MSI
MSE

=
SI=(I � 1)(J � 1)
SE=(N � IJ) � F(I�1)(J�1);N�IJ ; (3.60)

has an F distribution with (I � 1)(J � 1) and N � IJ degrees of freedom.
In �xed-level testing, H0AB is rejected at � level if the observed value of the
F -statistic is greater than the (1 � �)th quantile of the F distribution. In
testing the hypothesis, the strength of the evidence in favor or against H0AB
can be better reported by the corresponding p-value

pI = 1 � Hi;e(
sI=i

sE=e
); (3.61)



TWO-WAY ANOVA UNDER EQUAL VARIANCES 71

where i = (I�1)(J�1); e = N�IJ , and in general the notationHa;b stands
for the cdf of the F distribution with a and b degrees of freedom. Similarly, the
hypothesis H0A is can be tested based on the p�value pA = 1 � Ha;e( sA=asE=e

).
A derivation of the results are given Appendix A.3.

Example 2.10. Comparing teaching methods

In order to study the e¤ect of three teaching methods, a research scientist have
the methods tried out at 16 high schools. The teaching methods were tried out
in Mathematics and Science in di¤erent classes of students and mean scores at
the end of the marking period were recorded. The results of the experiment
are shown in Table 2.11.

Table 3.11 Mean scores by teaching method

Class: Mathematics Science

Method 1 84, 87, 82, 88 90, 93, 96, 97
Method 2 88, 89, 77, 84 88, 92, 97, 96
Method 3 79, 84, 71, 80 84, 86, 79, 78

Table 2.12 presents the sum of squares computed using the data in Table 2.11.
Corresponding mean sums of squares, the F -Values, and the p-values are also
shown in the ANOVA table.

Table 3.12 ANOVA for comparing teaching methods

Source DF SS MS F -Value p-value

Method 2 446.33 223.17 12.313 .00043
Class 1 287.04 287.04 15.837 .00088
Interaction 2 40.33 20.17 1.113 .35027
Error 18 326.25 18.13

Total 23 1099.96

It is evident from the F -Values and the p-values in the above ANOVA
table that the di¤erences in teaching methods are highly signi�cant, mainly
due to teaching method 1. This is also clear from Figure 2.2, which suggests
that in fact Method 1 scores for each subject are much higher than that of
Method 3. Perhaps there is no signi�cant di¤erence between Methods 1 and
Method 2. It seems that mean score that students obtained for Science is
signi�cantly larger than that for Mathematics. In Figure 2.2 the two curves
are not quite parallel, suggesting some interaction between the subject and
the method of teaching. But, according to the ANOVA, the interaction terms
are not statistically signi�cant, suggesting that the e¤ect of di¤erent teaching
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Figure 3.2 Scores by subject and method of teaching

methods is the same regardless of whether they are practiced in Science or in
Mathematics.

3.7.2 Case of unequal sample sizes

Next consider the model given in (3.55) without the assumption of equal
cell frequencies. In this section we also continue to assume that the error
variances are all equal. We need to decompose the means into main e¤ects
and interactions in the form �ij = � + �i + �j + 
ij so that we can specify
the testing problem. Further, making the decomposition unique requires some
constrains. Consider the general linear constraintsX

i

wi�i = 0;
X
j

vj�j = 0;
X
i

wi
ij = 0;
X
j

vj
ij = 0: (3.62)

The choice of weights and their impact on testing procedures will be discussed
later.

Testing the interactions

First consider the problem of testing the equality of interaction e¤ects,
namely the hypothesis

H0AB : 
ij = 0 for all i = 1; : : : ; I; j = 1; : : : ; J:
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In this case, tests of equal interaction terms can be based on the standardized
interaction sum of squares

SI =
X
i

X
j

nij(Y ij � b�� b�i � b�j)2 (3.63)

and the error sum of squares

SE =
IX
i=1

JX
j=1

nijX
k=1

(Yijk � Y ij)2; (3.64)

where Y ij =
nijP
k=1

Yijk=nij is the sample mean of the data from (i; j)th cell,

and (b� ; b�i ; b�j) is the set of values of parameters (�; �i ; �j) that minimizes
the quadratic form

f =
IX
i=1

JX
j=1

nijX
k=1

(Yijk � �� �i � �j)2

subject to the constraints in equation (3.62).
Despite the unequal cell frequencies, testing the of equality of interactions

can still be based on the result

FI =
MSI
MSE

=
SI=(I � 1)(J � 1)
SE=(N � IJ) � F(I�1)(J�1);N�IJ

and the resulting p-value

pI = H(I � 1)(J�1);(N�IJ)

�
(N � IJ)sI

(I � 1)(J � 1)sE

�
; (3.65)

where H(I � 1)(J�1);(N�IJ) is the cdf of the F distribution with (I � 1)(J�1)

and (N � IJ) degrees of freedom, and N =
IP
i=1

JP
j=1

nij is the total sample size.

The result is valid regardless of the weights appearing in (3.62); the reader
is referred to Arnold (1981) for a detailed discussion of these issues. In view

of this result, it is convenient to choose the weights as wi = ni: =
JP
j=1

nij

and vj = n:j =
IP
i=1

nij . Then, (b� ; b�i ; b�j) required in the computation of
the interaction sum of squares can be found by solving the system of linear
equations

JX
j=1

nij(yij � b� � b�i � b�j ) = 0; i = 1; : : : ; I

IX
i=1

nij(yij � b� � b�i � b�j ) = 0; j = 1; : : : ; J
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Testing the main e¤ects

Now consider the problem of testing the main e¤ects. To be speci�c and
to describe the nature of testing procedures available for testing main e¤ects,
consider the problem of testing the hypothesis

H0A : �1 = �2 = � � � = �k = 0:

De�ne the sum of squares due to factor A as

SA =
X
i

X
j

nij(Y ij � b�� b�j � b
ij)2;
where (b� ; b�j ; b
ij) are the estimates of the nuisance parameters (�; �j ; 
ij).
In this case, they are estimated by minimizing the function

g =
IX
i=1

JX
j=1

nijX
k=1

(Yijk � �� �j � 
ij)2:

Given any set of weights, under H0A, SA has a chi-squared distribution with
I�1 degrees of freedom and it is distributed independently of SE . The reader
is referred to Arnold (1981) for details of these and related results. It is now
clear that, given a set of user speci�ed weights, the hypothesis can be tested
based on the p-value

pA = H(I � 1);(N�IJ)

�
(N � IJ)sA
(I � 1)sE

�
: (3.66)

Similarly, with the obvious de�nition of SB , the equality of B main e¤ects
can be tested based on the p-value

pB = H(J � 1);(N�IJ)

�
(N � IJ)sB
(J � 1)sE

�
:

As discussed by Fujikoshi (1993), with the widely used choice of using nij
for weights with the constraints

P
i

ni:�i = 0;
P
j

n:j�j = 0;
P
i

nij
ij = 0;P
j

nij
ij = 0, the two sum of squares SA and SB can be conveniently computed

as
SA =

X
i

X
j

nij(Y ij � Y )2 � SI �
X
j

n:j(Y :j � Y )2 (3.67)

and
SB =

X
i

X
j

nij(Y ij � Y )2 � SI �
X
j

ni:(Y i: � Y )2; (3.68)

where Y i: =
P
j

Y ij=J and Y :j =
P
i

Y ij=I are the sample means corresponding

to the levels of the two factors, and Y =
P
i

P
j

P
k

Yijk=N is the grand mean of

all the observations.
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3.8 TWO-WAY ANOVA UNDER HETEROSCEDASTICITY

Let us now drop the assumption of equal variances made in previous sec-
tions, and consider the testing problem of a factorial design with two factors.
Speci�cally, consider the linear model (3.55) under the milder assumption

�ijk � N(0; �2ij), i = 1; : : : ; I; j = 1; : : : ; J:

Inferences can still be based on the su¢ cient statistics Y ij ; S2ij ; i = 1; : : : ; I;
j = 1; : : : ; J . As in one-way ANOVA, suitable tests for this case can be derived
from results valid for the known variances case. Appropriate sums of squares
leading to F -Statistics can be deduced, for instance, from results of Fujikoshi
(1993) for the unbalanced model or from the sums of squares decomposition
we get when the variances are known.
Consider again the null hypothesis

H0AB : 
ij = 0 for all i = 1; : : : ; I; j = 1; : : : ; J:

for testing the interaction between A and B. To test this hypothesis, consider
the variance weighted interaction sum of squares and the error sum of squares

eSI(�211; :::; �2IJ) = IX
i=1

JX
j=1

nij�
�2
ij (Y ij � b�i � b�j � b�)2; (3.69)

and

eSE =

IX
i=1

JX
j=1

nijX
k=1

��2ij (Yijk � Y ij)
2 =

IX
i=1

JX
j=1

nijS
2
ij=�

2
ij ; (3.70)

where (b�; b�i; b�j) is the set of values of parameters (�; �i; �j) that minimizes
the quadratic form

f =
IX
i=1

JX
j=1

nijX
k=1

��2ij (Yijk � �� �i � �j)2

If nij is used to de�ne the constraints as in the previous section, we get

b� =

IP
i=1

JP
j=1

nij�
�2
ij Y ij

IP
i=1

JP
j=1

nij�
�2
ij

and b�i and b�j become the solutions of the linear equations
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JX
j=1

nij�
�2
ij (Y ij � b�� b�i � b�j) = 0; for i = 1; : : : ; I

and
IX
i=1

nij�
�2
ij (Y ij � b�� b�i � b�j) = 0; for j = 1; � � � ; J:

The estimates also satisfy the constraints

IX
i=1

JX
j=1

nij�
�2
ij b�i = 0 and

IX
i=1

JX
j=1

nij�
�2
ij
b�j = 0

so that b�j can be eliminated from the �rst equation and b�i can be elimi-
nated from the second equation, thus enabling their computation by matrix
manipulations. For additional details of the problem the reader is referred to
Ananda and Weerahandi (1997).
From results available for the known variances case we have

eSI � �2(I�1)(J�1) (3.71)

and

Vij =
nijS

2
ij

�2ij
� �2nij�1; i = 1; : : : ; I; j = 1; : : : ; J: (3.72)

Equation (3.72) can be employed to tackle unknown variances in

eSI(�211; :::; �2IJ):
By applying the method of substitution, a p-value appropriate for testing
the hypothesis of zero interaction e¤ects can be computed as

p = Pr(eSI(�211; :::; �2IJ) � esI(n11s211V11
;
n12s

2
12

V12
; :::;

nIJs
2
IJ

VIJ
))

= 1 � E(Gi(esI(n11s211
V11

;
n12s

2
12

V12
; :::;

nIJs
2
IJ

VIJ
))); (3.73)

where Gi is the cdf of the chi-squared distribution with i = (I � 1)(J � 1)
degrees of freedom and the expectation is taken with respect to the chi-squared
random variables Vij . The hypothesis H0AB is rejected for small values of p.
The p-value can be computed by exact numerical integration or by Monte
Carlo method using on a large number of random numbers generated from
each of the independent chi-squared random variables, Vij .
For details and for a formal derivation of foregoing results, the reader is

referred to Ananda and Weerahandi (1997). To show that this is actually
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a generalization of the classical F -test, they also expressed (3.73) in terms
of independent Beta random variables and the cdf of an F distribution with
(I�1)(J�1) and N�IJ degrees of freedom. The p-value can be conveniently
computed using the XPro software package. With a script to implement the
Monte Carlo integration, it can also be computed using widely used statistical
software such as SAS and SPlus.
Procedures for testing the hypotheses H0A and H0B can be derived in a

similar manner. It should be noted however that, as in unbalanced models
with unequal cell frequencies [cf. Lindman (1992)], the two-way ANOVA
model with unequal and known variances does not yield orthogonal terms
leading to a sums of squares decomposition. Moreover, the F -Statistics can
be de�ned in alternative ways using di¤erent constraints for �i and �j main
e¤ects. Consequently, there is no common agreement about how the main
e¤ects should be tested in the presence of interactions. Here we employ a
widely used method of computing the sums of squares due to main e¤ects
when the model is unbalanced.
To obtain the appropriate variance weighted sums of squares for the main

e¤ects, �rst de�ne the sums of squares as

SA(�
2
11; :::; �

2
IJ) =

IX
i=1

JX
j=1

nij�
�2
ij (Y ij � Y i:)

2 (3.74)

and

SB(�
2
11; :::; �

2
IJ) =

IX
i=1

JX
j=1

nij�
�2
ij (Y ij � Y :j)

2 (3.75)

Also de�ne

eST�E = IX
i=1

JX
j=1

nij�
�2
ij (Xij � b�)2: (3.76)

Then, the standardized sums of squares due to the main e¤ects A and B, in
the presence of the other are de�ned as

eSA(�211; :::; �2IJ) = eST�E � eSI � SB (3.77)

and

eSB(�211; :::; �2IJ) = eST�E � eSI � SA; (3.78)

respectively. When the variances are unknown, the main e¤ects can be tested
by chi-squared tests based on the known results

eSA � �2(I�1) and eSB � �2(J�1) .
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When the variances are unknown as usually the case, the tests can be derived
by taking the same approach we took in testing H0A. The p-value for test-
ing H0A can be expressed in two alternative forms as before. The simpler
expression of the two is

p = 1 � E(Ga(esA(n11s211
V11

;
n12s

2
12

V12
; :::;

n1js
2
IJ

VIJ
))); (3.79)

where esA is the observed value of SA and a = I � 1. This p-value also can be
expressed in terms of Beta random variables and the cdf of an F distribution
with a and e = (I � 1)(J � 1) degrees of freedom. Similarly, the p-value
for testing H0B is obtained by replacing esA by esB and replacing a by the
corresponding degrees of freedom b = J � 1. For detailed results concerning
the unbalanced models due to unequal cell frequencies and heteroscedasticity,
the reader is referred to Ananda and Weerahandi (1997). Since, the sum of
squares decomposition is no longer orthogonal, they also discuss how one main
e¤ect can be tested in the presence and absence of the other. In application,
the spirit of the above procedures remains the same except for the use of
appropriate sum of squares, for a given factor (e.g. SA or eSA for factor A),
before or after the other one is added and the total sum of squares is balanced.
This is illustrated by Example 2.11.

Example 2.11. Comparing teaching methods (continued)

Consider again the data presented in Table 2.11. In Example 2.7 we tested
the e¤ect of teaching methods under the assumption that data from each cell
have equal variances. Now we are in a position to carry out the tests without
that assumption. The p-values for computing the three hypotheses of interest
are displayed in the table below. Also shown are the p-values for testing the
incremental main e¤ect of one factor before the other factor.

Source p-value

Interaction 0.5266
SS Decomposition: eST�E = eSI + SA + eSB

Method (A) 0.0051
Class (B) 0.0043

SS Decomposition: eST�E = eSI + SB + eSA
Method (A) 0.0058
Class (B) 0.0587

These p-values, especially those based on the incremental sums of squares,eSI ; eSA; and eSB , also lead to the same conclusion as before that the di¤erences
in the e¤ects of teaching methods, the class e¤ect are statistically signi�cant
and that the interaction term is not signi�cant.
Ananda and Weerahandi (1997) and Bao and Ananda (2002) provided ex-

amples and simulations to demonstrate the importance of addressing the prob-
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lem of heteroscedasticity. In two-way ANOVA the assumption of equal vari-
ances not only has a severe adverse e¤ect on the power of the test, but also
can lead to concluding that factor A is signi�cant when in fact factor B is the
one that is signi�cant. Although this is not always the case, depending on
the variances, the classical F -test might lead to such misleading conclusions
in other situations as well. Example 2.13 shows another problematic situation
with a hypothetical data set. This by no means is a reasonable simulation
study, and it simply serves to illustrates how the classical F -test can lead to
wrong conclusions as a result of ignoring the unequal variances.

Example 2.12. Misleading implications of classical F -test

Table 2.12 shows the sample means and sample standard deviations (MLEs)
computed from a balanced two-way layout with sample cell frequency 5. The
hypothetical data set in this example were generated from a model having
unequal means for the levels of factor A and normally distributed errors with
unequal variances.

Table 3.13 Sample means by factor

Levels B1 B2 B3 B4 B5

A1 16.3 14.1 14.1 13.6 13.5
A2 15.9 15.8 15.7 18.6 14.1
A3 17.4 16.9 14.0 15.1 14.1
A4 16.9 17.7 14.5 13.9 14.9

Table 3.14 Sample variances (MLE) by factor

Levels B1 B2 B3 B4 B5

A1 11.3 0.9 4.5 4.1 0.9
A2 4.1 0.9 4.5 3.7 13.3
A3 6.9 16.1 6.9 6.5 8.1
A4 2.1 6.5 5.7 13.3 6.5

It is evident from the sample variances that the assumption of equal vari-
ances is not a reasonable one in this situation. If we ignore this fact and
proceed with the classical approach, we get the following ANOVA table.
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Source DF SS MS F -value p-value

Interaction A�B 12 96.335 8.028 1.013 0.4452

Factor A 3 39.63 13.22 1.667 0.1808
Factor B 4 85.39 21.35 2.694 0.0367
Error 80 634 7.925
Total 99 855

The classical ANOVA suggests that the di¤erences in the levels of factor
A are signi�cant, but those of factor B are not. There is also no interaction
between the two factors. Now let us drop the assumption of equal variances
and retest the hypotheses using generalized p-values. The p-values for com-
puting the three hypotheses are shown in the table below. Also shown are the
p-values for testing the incremental main e¤ect of one factor in the presence
of the other factor.

Source p-value

Interaction 0.4509
SS Decomposition: eST�E = eSI + SA + eSB

Factor A 0.0001
Factor B 0.1028

SS Decomposition: eST�E = eSI + SB + eSA
Factor A 0.0052
Factor B 0.0226

Observe that according to the above p-values, while we come to the same
conclusion about interactions, it is factor A, not B, that is highly signi�cant
both in the presence or absence of factor B. In fact, in the presence of factor
A, factor B is not quite signi�cant at the 0.05 level, but may become signi�-
cant with additional data. Since the classical F -test relied on an unreasonable
assumption, its results are not reliable. This example demonstrates how the
classical F -test can mislead us to making erroneous conclusions. Therefore,
the classical F -test is not recommended unless the assumption of equal vari-
ances is reasonable.

3.9 TWO-FACTOR NESTED DESIGN

Procedures for analyzing data from other types of designs including higher-
way designs and nested designs can be established by taking an approach
similar to that in the above sections. To illustrate the nature of testing proce-
dures available for nested designs, to be speci�c, consider a two-factor nested
design with factors A and B. Ananda (1995) provided procedures for testing
the usual hypotheses in this context with unequal cell frequencies and un-
equal variances. To outline the main results, suppose Factor A has I levels
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and Factor B is nested within A having J1; J2; : : : ; JI levels so that the total
number of levels of factor B is J =

P
Ji. Suppose a random sample of size

nij is available from (i; j)th level of B, i = 1; 2; : : : ; I; j = 1; 2; : : : ; Ji. Hence
the total sample size is

N =
IX
i=1

JiX
j=1

nij :

Let Yijk; i = 1; 2; : : : ; I; j = 1; 2; : : : ; Ji; k = 1; 2; : : : ; nij be the random
variables representing the observations available from each cell.
Assuming a linear model, we can consider the true cell mean of the (i; j)

level of factor B; say �ij ; as the sum of a general mean �, the main e¤ect �i of
the ith level of A, and an e¤ect �ij of the (i; j)th level of factor B representing
the interaction e¤ects confounded with the main e¤ect of B; that is

�ij = � + �i + �ij :

Let �Yij and S2ij , i = 1; : : : ; I; j = 1; : : : ; Ji denote the sample mean and the
sample variance of the (i; j)th treatment; that is,

�Yij =

nijX
k=1

Yijk=nij , S2ij =
nijX
k=1

�
Yijk � �Yij

�2
=nij :

Their observed sample values are denoted by �yij and s2ij , i = 1; : : : ; I; j =
1; : : : ; Ji respectively. Assuming normally distributed observations, consider
the model

Yijk = � + �i + �ij + �ijk; (3.80)

where

�ijk � N
�
0; �2ij

�
; i = 1; 2; : : : ; I; j = 1; 2; : : : ; Ji; k = 1; 2; : : : ; nij :

and �2ij is the variance of data taken from (i; j)th cell. To make �; �i, and �ij
unique, the usual linear constraints

IX
i=1

vi�i = 0;

JiX
j=1

wij�ij = 0

are imposed, where vi and wij are nonnegative weights such that
PI

i=1 vi > 0

and
PJi

j=1 wij > 0:

3.9.1 Testing interactions

Consider the problem of testing hypothesis

H0� : �ij = 0; i = 1; : : : ; I; j = 1; : : : Ji
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against the natural alternative. Testing of H0� can be considered as a problem
of testing whether or not the true cell means �ij depend only on i. For the un-
balanced case, Arnold (1981) provided an F -test under the usual assumption
of equal error variances. The p-value of the F�test is

p = 1�H(J�I);(N�J)

"
(N � J)

PI
i=1

PJi
j=1 nij(�y

2
ij � �yi:)2

(J � I)
PI

i=1

PJi
j=1

Pnij
k=1(yijk � �yij)2

#
; (3.81)

where H(J�I);(N�J) is the cumulative distribution function of the F distribu-
tion with (J � I) and (N � J)degrees of freedom and �yi: =

P
j nij �yij=

P
nij :

When the variances are unequal, a generalized F -test can be obtained as
before by �rst considering the solution based on the sum of squares ~S�

~S�
�
�211; �

2
12; � � � ; �2I;JI

�
=

IX
i=1

JiX
j=1

nij( �Xij)
2

�2ij
�

PI
i=1

��PJi
j=1

nij �Xij

�2ij

�2�
PJi

j=1
nij
�2ij

(3.82)
when the variances are known and then tackling the unknown variances by
their estimates having the distribution

nijS
2
ij=�

2
ij � �2nij�1:

Then, it is straightforward to show (Exercise 2.7) that the generalized p-value
appropriate for testing H0� is

p = 1� E

8><>:GJ�I
264 IX
i=1

JiX
j=1

�x2ijRij

s2ij
�

PI
i=1

�PJi
j=1

�xijRij

s2ij

�2
PJi

j=1
Rij

s2ij

375
9>=>; (3.83)

where GJ�I is the cdf of the chi-squared distribution with J � I degrees of
freedom and the expectation is taken with respect to the independent chi-
squared random variables

Rij � �2nij�1; i = 1; : : : ; I; j = 1; : : : Ji:

With most statistical software packages, the p�value can be computed by
Monte Carlo integration by generating chi-squared random numbers and then
estimating the expected value appearing in the formula by the sample mean
of the simulated data

gl = GJ�I

264 IX
i=1

JiX
j=1

�x2ijrijl

s2ij
�

PI
i=1

�PJi
j=1

�xijrijl
s2ij

�2
PJi

j=1
rijl
s2ij

375 ; l = 1; :::; L;

where rijl is the lth chi-squared random number generated from Rij . The
XPro software automatically performs the necessary Monte Carlo integrations.
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3.9.2 Testing main e�ects

Now consider the problem of testing the main e¤ects of Factor A� i.e., the
problem of testing the hypothesis H0�. Unlike the problem of the interac-
tions, appropriate tests in this situation depend on the weights chosen for
wij . Therefore, the weights must be speci�ed prior to testing. In the case of
equal variances, the hypothesis can be tested using an F -test. In particular,
with the weights wij = nij this F -Statistic leads to the p-value

p = 1�H(I�1);(N�J)

"
(N � J)

PI
i=1 ni:(�x

2
i: � �x::)2

(I � 1)
PI

i=1

PJi
j=1

Pnij
k=1(xijk � �xij)2

#
: (3.84)

Ananda (1995) provided generalized tests for the case of unequal variances
and general weights wij and also for proportional weights wij = nij=�2ij . The
generalized test for the case of general weights is given by

p = 1� E
(
GI�1

"
~s�

 
n11s

2
11

R11
;
n12s

2
12

R12
; � � � ;

nI;JIs
2
I;JI

RI;JI

!#)
; (3.85)

where GI�1 is the cdf of the chi-squared distribution with (I � 1) degrees of
freedom, the expectation is taken with respect to the independent random
variables Rij � �2nij�1, and ~s� is the observed value of

~S�
�
�211; �

2
12; � � � ; �2I;JI

�
=

IX
i=1

JiX
j=1

nij
�2ij

�
�Xij � �̂ � �̂ij

�2
; (3.86)

where

�̂ =

PI
i=1

PJi
j=1

h
wij

�PJi
k=1 wik

�Xik

�
=
�PJi

k=1 w
2
ik�

2
ik=nik

�i
PI

i=1

PJi
j=1

h
wij

�PJi
k=1 wik

�
=
�PJi

k=1 w
2
ik�

2
ik=nik

�i
and

�̂ij = �Xij � �̂ �
wij�

2
ij

�PJi
k=1 wik

�Xik � �̂
PJi

k=1 wik

�
nij
PJi

k=1 (w
2
ik�

2
ik=nik)

for all i = 1; 2; : : : ; I; j = 1; 2; : : : ; Ji:Ananda
(1995) also expressed the generalized test in the form of a generalized F -test.
The weights of the form wij = nij=�

2
ij is the counterpart of the weights

leading to the simple F -Statistic that Arnold (1981) discussed. With these
weights the generalized sum of squares ~S� reduces to

~S�� =

PI
i=1

�PJi
j=1 nij

�Xij=�
2
ij

�2
PJi

j=1 nij=�
2
ij

�

�PI
i=1

PJi
j=1 nij

�Xij=�
2
ij

�2
PI

i=1

PJi
j=1 nij=�

2
ij

(3.87)
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Hence, the p-value for testing H0� can be conveniently computed as

p = 1� E

8><>:G
264 IX
i=1

0B@
0@ JiX
j=1

�xijRij=s
2
ij

1A20@ JiX
j=1

Rij=s
2
ij

1A�1
1CA

�

0@ IX
i=1

JiX
j=1

�xijRij=s
2
ij

1A20@ IX
i=1

JiX
j=1

Rij=s
2
ij

1A�1
375
9>=>; : (3.88)

Example 2.13. Power de�ciency of the classical F -test in nested designs.

Ananda (1995) used the data shown in table below to demonstrate the lack of
power of the classical F -test under heteroscedasticity. He simulated the data
from an exact model in which factor A levels are di¤erent and the interactions
are not. The following table shows the summary statistics computed from the
simulated data.

A Level B Level Sample Size Mean Standard Deviation

A1 B1 10 51.13 1.29
A1 B2 7 49.15 2.49

A2 B3 6 50.01 2.58
A2 B4 9 49.26 1.19
A2 B5 8 48.99 0.99

It is evident from the sample variances that the assumption of equal vari-
ances is not a reasonable one in this situation. If we ignore this fact and pro-
ceed with the classical approach, we get the following ANOVA table, which
leads us to conclude that none of the e¤ects are statistically signi�cant.

Source DF SS MS F -value p-value Gen. p-value

B(A) 3 19.863 6.621 1.922 0.144 0.334

A 1 8.877 8.877 2.577 0.117 0.010
Error 35 120.566 3.445
Total 39 149.306

Also included in the ANOVA table are the p-values we get using the gener-
alized test that does not rely on the unreasonable assumption of homoscedastic
variances. While we come to the same conclusion about the interactions (con-
founded with B e¤ects), we now �nd strong evidence to conclude that the
di¤erences in factor A levels are highly signi�cant, which we know to be the
right conclusion from the simulated experiment. This example demonstrates
the lack of the classical F -test in the presence of unequal error variances, just
as was the case in One-Way ANOVA.
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Exercises

3.1 Let Y11; Y12; : : : ; Y1n1 be a random sample of size n1 from one popula-
tion and let Y21;Y22; : : : ; Y2n2 be a random sample of size n2 from a second
population. Assume that

Y1j � N(�1; �21), j = 1; : : : ; n1

Y2j � N(�2; �22), j = 1; : : : ; n2 .

Let Y i and S2i be the sample mean and the sample variance (MLEs) of the
ith population. Show that

Y i � N(�i;
�2i
ni
);
niS

2
i

�2i
� �2ni�1, i = 1; 2

and that they are independently distributed.

3.2 Consider the two normal samples in Exercise 2.1. Let a and b be two
known constants. Assuming that the two variances are equal, derive 100
%
right-sided con�dence intervals for � = a�1 + b�2. Also derive right-sided
generalized con�dence intervals without the equal variances assumption.

3.3 Consider again the two normal samples in Exercise 2.1. Establish a
procedure for testing the hypothesis

H0 :
�1 � �2
�1 + �2

� �0

when (i) the variances are equal, (ii) the variances are unequal.

3.4 Let Yi; i = 1; 2 be two independent random variables distributed as

Yi � Gamma( �i ; � ); i = 1; 2 :

(a) Show that the random variables

B =
Y1

Y1 + Y2
and S = Y1 + Y2

are independent.
(b) Show that

B � Beta( �1 ; �2 );

and that

S � Gamma( �1 + �2 ; �):

3.5 Extend the results in Exercise 2.4 to the case of k gamma random
variables. Hence show that formulas (3.42) and (3.41) are equivalent.
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3.6 By considering the identity

Yijk � Y = (Yijk � Y ij) + (Y i:� Y ) + (Y :j � Y )
+ (Y ij � Y i:� Y :j + Y );

squaring and summing it, and then showing that the sum of cross product of
any two terms on the right-hand side is equal to zero, prove that

ST = SA + SB + SI + SE ; (3.89)

where

ST =
IX
i=1

JX
j=1

KX
k=1

(Yijk � Y )2;

SA = JK
IX
i=1

(Y i: � Y )2; SB = IK
JX
j=1

(Y :j � Y )2;

SI = K

IX
i=1

JX
j=1

(Y ij � Y i: � Y :j + Y )2;

and

SE =
IX
i=1

JX
j=1

KX
k=1

(Yijk � Y ij)2 :

3.7 By using (3.82) or otherwise, prove that the generalized p-value for
testing the interactions of two-way nested model can be based on the p-value
(3.83).

3.8 An agricultural research scientist is interested in comparing four hybrids
of corn. The four corn hybrids were planted in a random order in 22 plots of
equal size and fairly homogeneous soil conditions. A set of data on yield from
corn hybrids obtained from the experiment are shown below:

Hybrid A 7.4, 6.6, 6.7, 6.1, 6.5, 7.2
Hybrid B 7.1, 7.3, 6.8, 6.9, 7.0
Hybrid C 6.8, 6.3, 6.4, 6.7, 6.5, 6.8
Hybrid D 6.4, 6.9, 7.6, 6.8, 7.3

(a) Assuming that the variances of yield from all four hybrids are equal, test
whether there is a signi�cant di¤erence between the mean yields.
(b) Carry out the above hypothesis without the assumption of equal variances.
(c) Test whether data provide su¢ cient evidence to indicate that the variances
are not the same.



TWO-FACTOR NESTED DESIGN 87

3.9 Consider the summary data in Table 2.7. Carry out multiple compar-
isons by the Bonferroni and Sche¤e methods to compare pairs of corn hybrids
and discuss your �ndings. Construct generalized Tukey�Kramer intervals un-
der the assumption of equal error variances and without that assumption to
compare the three means. Discuss your �ndings.

3.10 In order to test whether there is no di¤erence in average intelligence
of students in two school districts, an IQ test is administered. Suppose only
the mean test scores are available to an analyst. The mean test scores by
education level and the school district are shown below:

Education level 1 2 3 4 5 6

District 1 68 64 71 74 67 73
District 2 69 72 70 71 77 75

Establish procedures for testing whether there is any di¤erence between the
e¤ects of school district and the education level on the IQ scores. Compute
p�value for testing each hypothesis and discuss your �ndings.

3.11 In a two-way factorial design, subjects of three age groups were allo-
cated to one of three diet plans during a study period. The reductions in blood
pressure due to the diets after the study period are shown in the following
table:

Group 1 Group 2 Group 3

Diet 1 3, 4, -2 4, 3, 5 2, 3, -2
Diet 2 -3, 0, 2 2,-1, 1 2,-1, 0
Diet 3 4, 1, 5 -2, 2, 4 -1, 4, 2

Perform an analysis of variance of this data under the assumption of equal
error variances. Compute p-values for testing main e¤ects and the interaction
and discuss your �ndings. Repeat the analysis without the assumption of
equal variances and compare the results.

3.12 In order to study the e¤ect of two catalysts and the temperature on the
yield of a chemical process, an experiment is carried out using one catalyst at
a time, each under three temperatures. The following table shows the results
of the experiment, the yields obtained in four runs under each temperature.

Catalyst A Catalyst B

Temp. 1 53, 56, 62, 58 59,63, 65, 57
Temp. 2 58, 59, 57, 64 58,62, 67, 66
Temp. 3 59, 54, 61, 60 64,55, 61, 58

Perform an analysis of variance of this data under the assumption of equal
error variances. Compute p-values for testing the e¤ects of the catalysts, the
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temperature, and their interaction. Repeat the analysis without the assump-
tion of equal variances, discuss the �ndings, and compare the results.

3.13 Consider the data summarized below from a two-factor design.

A Level B Level Sample Size Mean Standard Deviation

A1 B1 8 72.36 4.87
A1 B2 10 63.34 2.69

A1 B3 7 64.56 3.02
A2 B4 10 69.87 3.78
A2 B5 10 70.56 4.19
A2 B6 10 65.79 1.99

Perform an analysis of variance of this data under the assumption of equal
error variances. Repeat the analysis without the assumption of equal vari-
ances, discuss the �ndings, and compare the results.



CHAPTER 4

INTRODUCTION TO MIXED MODELS

4.1 INTRODUCTION

The purpose of this chapter is to provide an introduction to Mixed Models
which will play an important role in the analysis of Repeated Measures. In
fact, except for the MANOVA approach, all the models that we will develop
in this book for repeated measures analyses fall under the class of mixed
models. In the case of Growth Curves we undertake in Chapter 10, except for
the GANOVA approach, we will also employ mixed models.
The models that we studied in Chapter 2 are called �xed e¤ects models. In

that setting, the levels of each factor were considered as deliberate choices of an
experimenter and the assumed models allowed the experimenter to compare
the levels. In some other applications, the levels of each factor used in an
experimental design are not of particular interest and they are selected at
random from a large population of potential levels. Random e¤ects models
incorporate this feature explicitly. Yet in another class of application each
factor level is of interest, but they are treated as if they are realized values of
a distribution and hence treated as random e¤ects. In some other applications,
the levels of some of the factors are treated as �xed e¤ects while the levels of

(Generalized Inference in Repeated Measures, Edition 2). By (Weerahandi)
Copyright c
 2013 John Wiley & Sons, Inc.
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the other factors are treated as random e¤ects. Models having some random
e¤ects and some �xed e¤ects are referred to as mixed models.
Random e¤ects models and mixed models arise in the design and analysis

of many industrial, biomedical, and agricultural model. Lately mixed models
have become very popular among practitioners in Sales & Marketing as well,
since use of the Best Linear Unbiased Predictor (BLUP), a notion introduced
by Henderson (1975), can provide more accurate estimates of factor levels
than the LSE when we treat them as realized values of a certain distribu-
tion. As an example of the former, consider the problem of estimating the
power consumption of a certain brand of refrigerators. Quantities of primary
importance in this application might be the average power consumption and
its variance. In designing an experiment to estimate these quantities and in
modeling the data from such an experiment, we need to take in to account
a number of factors a¤ecting the power consumption. Although individual
levels of such factors are important and usually not reported, they contribute
to the variance and its structure. Some of the factors a¤ecting the power con-
sumption in this application are the temperature setting in the refrigerator,
the external temperature, the refrigerator load, and so on. Table 3.1 shows a
hypothetical data set from an experiment which is designed to quantify the
e¤ect of just one factor, namely the refrigerator load. In this design, perhaps
the temperature setting is set �xed at the average level that households are
expected to use. In Chapter 4, we will revisit the problem when the temper-
ature setting is also varied and modeled in the setting of a higher-way mixed
model. In this example the number of observations available at di¤erent load
conditions are not equal. We will refer to such designs as unbalanced designs.

Table 4.1 Energy consumption

Low Medium High

9.80 12.13 15.58
10.57 7.84 14.01
10.47 12.54 15.98
8.59 15.02 12.70
8.62 13.17 11.97
11.02 12.60 18.27
7.31 9.92 14.04
12.83 12.84 9.94
10.99 14.26
8.18 12.05

10.66
11.55

As an example of the latter, when one needs to estimate the e¤ect of a TV
campaign by Market, one can obtain more accurate estimates of consumer
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response to the TV advertisements if the response by market (factor levels) are
treated as random e¤ects distributed around the average national response,
and using BLUP instead of the LSE as we will discuss later. Although the
treatment of factor levels of interest as random e¤ects and use of the BLUP
is most desirable in dealing with noisy data, they are also useful in designed
experiments when one has to work with small samples.
The variances of random e¤ects models and in mixed models are referred to

as variance components. In random e¤ects models, we are mainly interested
making inferences about variance components. In mixed models, we would
be interested in making inferences about both the means of �xed e¤ect terms
and the values of the variance components. For further discussion on variance
components and mixed models the reader is referred to Khuri, Mathew, and
Sinha (1998).

4.2 RANDOM EFFECTS ONE-WAY ANOVA

First consider the simplest possible random e¤ects model involving just one
factor, say factor A, and no �xed e¤ect terms. In other words, this model has
only two sources of variation, namely the variation due to randomly selected
factor levels and the overall sampling variation. Let

A1; A2; : : : ; Ai; : : : ; Ak

be the factor levels. In the balanced case of the problem, which has implica-
tions on higher-way mixed models, we have n observations corresponding to
each of the k factor levels. Later in this chapter we will consider the case of the
unequal number of observations available from di¤erent levels of the factor.
Let Yi1; Yi2,: : : ; Yin denote the sample of data available from the ith factor
level. They are also known as the observed values of the response variable.
Let �i be the random e¤ects corresponding level Ai of factor A. Assume that

�i � N(0; �2�); (4.1)

where �2� is the population variance of the random factor. In the random
e¤ects model, while individual �i terms are of no particular interest in some
applications they are considered important in other applications. The variance
term �2�, called the factor variance component, is of practical importance in
both applications. Let � denote the population mean of all responses; i.e.,
E(Yij) = �. Further assume a linear model of the form

Yij = � + �i + �ij ; for i = 1; : : : ; k; j = 1; : : : ; n; (4.2)

where �ij is the error term representing the deviation of the response of the
jth observation from the mean of observations from Ai. Assume that

�ij � N(0; �2�) (4.3)
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and that �i; �ij ; i = 1; : : : ; k; j = 1; : : : ; n are mutually independent. Note
that an assumption underlying the above model is that

E(Yij j �i ) = � + �i:

The model also implies that

Var(Yij) = �2� + �2� .

The terms �2� and �
2
� are referred to as the variance components of the model.

Moreover, �2� is sometimes referred to as the factor variance and �
2
� is referred

to as the error variance.
A related model that arise in the analysis of repeated measures is based on

the less restrictive assumption that

E(Yij j �i ) = �j + �i:

We defer further discussion and problem of making inferences on �j parameters
and the variance components until Chapter 7.
Consider the problem of making inferences about the common mean � and

the variance components �2� and �
2
� . Let Y i, i = 1; : : : ; k; be the sample

means corresponding to the k random e¤ects and let Y be the mean of all
data. As in the one-way ANOVA �xed e¤ects model, the decomposition of
the total sum of squares given by

ST = SE + SB =

kX
i=1

nX
j=1

(Yij � Y )2

play an important role in random e¤ects as well, where

SB = n

kX
i=1

(Y i: � Y )2 and SE =

kX
i=1

nX
j=1

(Yij � Y i)
2 (4.4)

are the between-group sum of squares and the error sum of squares. It is
easily seen (see Appendix A.5) that they are independently distributed as

SE
�2�

� �2N�k (4.5)

and
SB

�2� + n�
2
�

� �2k�1, (4.6)

and N = nk.
These distributional results will play a key role in all types of inferences

about the parameters of the model, as we will see later in this section. When
taking the generalized approach, there is also no di¢ culty doing inferences
more generally when the design is unbalanced in the sense that we do not



POINT ESTIMATION 93

have an equal number of observations from the k groups. If the sample size
available from group i is ni, then in place of (4.6), we could use a result due
to Wald (1940). When the sample sizes are di¤erent, we would use the result

SwB
�2�

� �2k�1 (4.7)

and rede�ne the sums of squares and the total sample size as

SwB =
kX
i=1

wi

0BBB@Y i �
kP
i=1

wiY i

kP
i=1

wi

1CCCA
2

, (4.8)

SE =
kX
i=1

niX
j=1

(Yij � Y i)
2; (4.9)

and N =
P
ni, where

wi =
ni

1 + ni��
; Y i =

niX
j=1

Yij=ni; and �� =�
2
�= �

2
� :

The design with unequal samples sizes will be referred to as the unbalanced
design.

4.3 POINT ESTIMATION

The grand mean � appearing in the linear model (4.2) is estimated by the
sample mean Y , an unbiased estimator that can be derived using the MLE
or LSE methods. When the random e¤ects are of particular interest as we
discussed above they are not estimated, but rather predicted using the BLUP
formula given by Henderson (1975) as

b�i = E(�ijY i) = $�+ (1�$)�y1; where $ =
�2e

�2� + n�
2
�

: (4.10)

The above formula of the BLUP involve unknown parameters and so they
need to be estimated. The LSE estimates of the variance components �2e and
�2� are b�2e =MSE
and b�2a =

MSB � MSE
n

, (4.11)
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respectively, where

MSB =
SB
k � 1 and MSE =

SB
N � k : (4.12)

While the estimator of the error variance have all desirable properties, that is
not the case with the estimate of the factor variance, because with a fraction
of possible values of the sample space the estimator could become negative.
The reader is referred to Weerahandi (2012) for a detailed discussion of the
issues and for a class of estimators that do not su¤er from this drawback.
The most popular and widely used methods of estimation of the BLUP are

ML and REML discussed in Searle, Casella, and McCulloch (1992). However,
as Yu et al (2013) argued, these methods have serious drawbacks when the
number of factor levels is not large. The reader is referred to Yu et al (2013)
and Gamage et al (2013) for improved point estimation methods of the BLUP
and interval estimation methods, respectively. Next we consider the problem
of making inferences about the variance components, which are important
regardless of whether or not a practitioner considers random e¤ects are of
particular interest or not.

4.4 INFERENCE ABOUT VARIANCE COMPONENTS

It is straightforward to make inferences about the error variance �2� based on
the distributional result (4.7). For example, 100
% upper con�dence bound
for �2e is obtained from the probability statement

Pr(
SE
�2�

� c
) = 
:

Obviously the resulting con�dence interval for �2� is [0; sE=c
 ]; and c
 is the
(1�
)th quantile of the chi-squared distribution withN�k degrees of freedom.
The result is valid regardless of whether or not we have equal sample sizes
from the k groups, provided that formula (4.8) is used to compute the error
sum of squares SE . In testing, hypotheses of the form H0 : �e � �0 are
rejected at � level if �0 > sE=c�.

H0 : �e � �0 :

Finally, an unbiased estimate of the error variance can also be obtained from
(4.6) as b�2� = SE

N � k ;

a result that follows from the fact that the mean of a chi-squared distribution
is the same as its degrees of freedom.
Inferences on the ratio �� = �2�= �

2
� of the two variance components can

also be obtained by classical methods. In general for the unbalanced case, tests
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and con�dence intervals concerning �� can be obtained from the distributional
result

SwB=(k � 1)

SE=(N � k))
� Fk�1;N�k; (4.13)

which follows from (4.5) and (4.7). For example, equal-tail 100
% con�dence
bound for �� is obtained from the probability statements

Pr(
SwB=(k � 1)

SE=(N � k))
� F 1�


2
) =

1� 

2

and

Pr(
SwB=(k � 1)

SE=(N � k))
� F 1+


2
) =

1� 

2

;

where F
 is the 
th quantile of the F distribution with k�1 and N�k degrees
of freedom. Let swB(�) denote the observed value of sum of squares SwB when
�2�= �

2
� = �. Now it is clear that, equal-tail 100
% con�dence bound for ��can

be expressed as

s�1wB(
k � 1
N � k sEF 1�


2
) � �� �s�1wB(

k � 1
N � k sEF 1+


2
); (4.14)

where s�1wB() is the inverse function of swB(). This con�dence interval is
referred to as the Wald interval. Its computation involve numerically solving
non-linear equations, but it can be conveniently obtained using the XPro
software package. In the balanced case of equal sample sizes from the k
groups (4.13) reduces to

F =
1

1 + n��

SB=(k � 1)

SE=(N � k)
� Fk�1;N�k;

and thus the con�dence interval reduces to

1

n

 
(k � 1)sE

(N � k)sBF 1�

2

� 1
!
� �� �

1

n

 
(k � 1)sE

(N � k)sBF 1+

2

� 1
!
: (4.15)

As before, testing of hypotheses can be based on the con�dence interval or
derived directly from the F distribution. To be speci�c consider the problem
of testing

H0 : �� � � versus H1 : �� > � :

First consider the balanced case. De�ne

T =
SB=(k � 1)

SE=(N � k)
.

Obviously, T is stochastically increasing in ��, the parameter of interest.
Hence, the p-value for testing H0 can be obtained as
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p = Pr(T � tobs j �� = � )

= 1� Pr(F � tobs =(1 + n�))

= 1�Hk�1;N�k
�

(N � k)sB
(1 + n�)(k � 1)sE

�
where Hk�1;k(n�1) is the cdf of the F distribution with k � 1 and k(n � 1)
degrees of freedom. More generally, regardless whether or not we have equal
samples sizes from the k groups, we could use the corresponding extreme
region given by the statistic SwB=SE and compute the p-value as

p = 1�Hk�1;N�k
�
(N � k)swB(�)

(k � 1)sE

�
: (4.16)

Example 3.1. Variance due to refrigerator load. Consider the data set in

Table 3.1. Suppose an analyst is interested in testing the hypothesis that the
variance due to the refrigerator load is less than 50% of the total variance.
This hypothesis testing problem here is equivalent to the hypothesis

H0 : �� � 1 versus H1 : �� > 1 :

When �� = 1, the weighted between group sum of squares is computed using
(4.8) and the error sum of squares is computed using (4.9). Then, the p-
value computed using (4.16) is p = 0:39. With this p-value there is no reason
to doubt the null hypothesis. Moreover, con�dence intervals for the percent
variance,

� = 100
�2�

�2� + �
2
�

= 100
��

�� + 1
;

can be computed by �rst obtaining the con�dence interval for �� using (4.14)
and then converting it to a con�dence interval for �. The 95% con�dence
interval for the percent factor variance due to refrigerator load obtained in
this manner is

12:4 � � � 97:7:

This con�dence interval also leads to the same conclusion concerning the hy-
pothesis of interest.
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4.4.1 Testing the factor variance

Testing the hypothesis of zero factor variance, namely H0 : �2� = 0; follows
from (4.16), because the hypothesis is equivalent to H0 : �� = 0: It could
also be derived from (4.5) and (4.6). In fact, that it leads to an F -test follows
from the analysis of variance table shown below. The fourth column of the
table shows the expected values of the mean sum of squares.

Table 4.2 Random e�ects ANOVA: Expected values

Source DF SS E(SS)

Between k � 1 SB (k � 1)(�2� + n�2�)
Within N � k SE (N � k)�2�
Total N � 1 ST

It is easily deduced from the expected values of the ANOVA table that
an unbiased estimate of the variance component �2a based on the su¢ cient
statistics is

b�2a =
MSB � MSE

n
, (4.17)

where

MSB =
SB
k � 1 and MSE =

SB
N � k : (4.18)

As discussed before a major drawback of the unbiased estimate is that with
some data sets the estimate can become negative. The MLE of the variance
component basically have the same drawback except for that with such data
sets the estimate could become zero. Therefore, in making inferences with
variance components it is better to report con�dence intervals. In fact, 50%
con�dence bound of �2� can be treated as a better point estimate.
The computation of the F -Value for testing the hypothesis can also be

conveniently set out in the ANOVA table as shown below. In fact, under
H0 : �2� = 0; wi = ni and so regardless of whether or not the design is
balanced, a test of H0 can be based on the F -Statistic

MSwB
MSE

v Fk�1;N�k;

where

MSwB =

kP
i=1

ni

0@Y i � kP
i=1

niY i

kP
i=1

ni

1A2

k � 1 .
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Table 4.3 Random e�ects ANOVA: F -Values.

Source DF SS MS F -value

Between k � 1 SB MSB =
SB
k�1

MSB
MSE

Within N � k SE MSE =
SE
N�k

Total N � 1 ST

4.4.2 General hypotheses and interval estimation

Except for the particular test, H0 : �2� = 0, making inferences about the
variance component �2� is not an easy task. For instance, the above F -test
has no implication in interval estimation. In fact classical approach fails to
provide exact solutions to testing problems of the form H0 : �

2
� � �20 and

hence in interval estimation. A number of authors including Satterthwaite
(1946), Welch (1956), Bulmer (1957), and Samaranayake and Bain (1988)
provided approximate con�dence intervals for �2�. Weerahandi (1993, 1995)
provided tests and con�dence intervals using the generalized approach.
To obtain exact tests and generalized con�dence intervals for �2� more gen-

erally for the unbalanced case, consider the potential generalized test variable
suggested by the results,

U =
SE
�2�

� �2N�k and V =
SwB
�2�

� �2k�1;

namely

T =
sESwB

SEswB

�
�2�
�2�

SE
sE

�
=
V

U

sE

swB

�
U�2�
sE

� : (4.19)

It is easily seen that the distribution of the test variable is free of nuisance
parameters, and it reduces 1 to at the observed values of the random vari-
ables. Moreover, except in extreme cases of unbalances, the T is stochastically
increasing in the variance component. In the balanced case of equal sample
sizes, it reduces to

T =
V

U

sE
sB

1 + n
U�2�
sE

n

=
sE
nsB

(
1

U
+
n�2�
sE

);

making it clear that T is stochastically increasing. Hence the generalized
p-value for testing H0 : �2� � �20 can be obtained as
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p = Pr(T � 1)

= Pr(V � U

sE
swB(

U�20
sE

))

= EGk�1

�
U

sE
sWB(

U�20
sE

)

�
; (4.20)

where Gk�1 is the cdf of the chi-squared distribution with k � 1 degrees of
freedom and the expectation is taken with respect to the random variable
U � �2N�K . In the balanced case, the test reduces to

p = EGk�1

�
sB

sE
U + n�2�

�
: (4.21)

Various generalized con�dence intervals for the factor variance component
can be derived from a generalized pivotal or deduced directly from the above
p-value. It is evident that if �21 and �

2
2 are chosen such that

EGk�1

�
U

sE
sWB(

U�21
sE

)

�
=
1� 

2

(4.22)

and

EGk�1

�
U

sE
sWB(

U�22
sE

)

�
=
1 + 


2
; (4.23)

then [�21, �
2
2] is a 100
% generalized con�dence interval for �

2. This con�dence
interval can be conveniently computed using the XPro software package.

Example 3.2. Variance due to refrigerator load (continued)

Consider again the data set in Table 3.1. In view of the fact that the point
estimates of variance components are not reliable (e.g., widely used unbiased
estimates could even become negative) and do not provide adequate infor-
mation about the magnitude of the variance component, suppose the analyst
wishes to report a lower con�dence bound for the variance due to the refrig-
erator load. This can be accomplished by applying the formula

EGk�1

�
U

sE
sWB(

U�20
sE

)

�
= 1� 
;

where �20 represents the desired lower con�dence bound. The 95% upper
con�dence interval obtained with data from Table 3.1 is (�2� � :981]. More-
over, the generalized p-value for testing the hypothesis H0 : �2� � 1 is 0.05,
indicating that we have su¢ cient evidence to conclude that the magnitude of
the variance component is not smaller than 1.
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4.5 FIXED-LEVEL TESTING

Suppose a practitioner is interested in testing hypotheses of �2� at a certain
�xed nominal level such as the 0:05 level or constructing 95% con�dence in-
tervals for �2�. Also suppose that the practitioner is interested in ensuring
that in repeated sampling, the tests will have the intended Type I error and
the intervals will have the intended frequency coverage. Unfortunately there
are no tests (and hence there are no con�dence intervals) that can attain
the intended level exactly for all possible values of the parameter �2� . As a
result, practitioners resort to asymptotic and other types of approximate so-
lutions. However, there are tests that do not exceed the intended Type I
error for all possible values of the nuisance parameter. Perhaps the only class
of classical con�dence intervals (and hence the corresponding tests) having
this property is the one proposed by Tukey (1951) and Williams (1962). The
main drawback of Tukey�Williams intervals is that they are highly conser-
vative in that the intervals tend to be too wide. According to simulation
studies [cf. Weerahandi and Amaratunga (1999)], one can obtain much more
powerful procedures having the desired property by taking the generalized
approach. In �xed-level testing with the generalized p-value given in the pre-
vious section, one simply rejects the null hypothesis if the p-value is less than
the speci�ed Type I error level. For other ways of obtaining more powerful
procedures based on the Tukey�Williams intervals, the reader is referred to
Samaranayake and Bain (1988) and Wang (1990).
Despite the availability of these procedures having excellent frequency prop-

erties, the most widely used procedures in making inferences about variance
components are perhaps the likelihood based methods, especially the ML
(maximum likelihood) and REML (restricted maximum likelihood) discussed
by Searle, Casella, and McCulloch (1992). The reason for wide use of these
procedures is perhaps because they are readily available from SAS PROC
MIXED. Unfortunately, the ML- and REML-based inference is probably the
worst choice one can make in most applications of mixed models including ap-
plications involving higher-way mixed models. This is because the ML- and
REML-based tests and con�dence intervals have very poor size performance.
Shown in the table below is a set of simulation results carried out by Weera-
handi and Amaratunga (1999) to compare the size performance of ML-based
method against the generalized test. When �2� is �xed at 1.0 (without loss
of generality) and �2a takes on values 0.01, 0.1, 1.0, and 10.0, they estimated
the actual size of each procedure using 10,000 simulated samples. Since the
actual size of ML-based test is so large, the estimates are reported here only
up to 2 decimal places. Observe that the true size of ML-based tests can be
as large as 0.6 and that of REML can be as large as 0.4, highly prohibitive
levels by any standard. Also note that the performance of ML-based tests is
worse than that of REML despite the fact that the advocates of likelihood-
based procedures prefer ML over REML. The size of the generalized test is
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0.05 up to the reported accuracy of two decimal points; when computed up
to 3 decimal points they range from about 0.048 to 0.050.
Although Weerahandi and Amaratunga (1999) reported the results for the

one-way random e¤ects model , the results have implications for variance com-
ponents in any higher-way mixed model having the canonical form that we
discuss in the next chapter. For example, the results for the case applies to
any situation with the canonical form having chi-squared random variables
with 4 and 45 degrees of freedom, which are quite typical especially in higher
way mixed models. Notice that ML-based tests becomes somewhat reason-
able only when the �rst degree of freedom is very large, a result that is also
seen from the asymptotic variance of ML estimates. Unfortunately, this is a
parameter that cannot be increased by increasing the number of replicates in
a cell. In fact the �rst degree of a freedom is usually related to the levels of a
factor, something that should be set at a low value (to avoid even more serious
practical problems) at the design stage of experiments. Burdick and Larsen
(1997) provide some simulation results for another class of applications where
ML-based procedures have very poor size performance. In view of these con-
siderations and due to very serious size problems of ML-based procedures in
variance components, their use in mixed models is highly discouraged.
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Actual sizes of tests with intended level 0.05.

�2a: 0.01 0.1 1.0 10.0

MethodnCase: k = 2; n = 10

ML 0.51 0.57 0.58 0.59
REML 0.33 0.38 0.40 0.40
Generalized 0.05 0.05 0.05 0.05

MethodnCase: k = 5; n = 10

ML 0.25 0.30 0.31 0.30
REML 0.17 0.20 0.21 0.21
Generalized 0.05 0.05 0.05 0.05

MethodnCase: k = 5; n = 1000

ML 0.31 0.31 0.30 0.31
REML 0.21 0.20 0.20 0.21
Generalized 0.05 0.05 0.05 0.05

MethodnCase: k = 10; n = 10

ML 0.17 0.19 0.20 0.20
REML 0.12 0.13 0.14 0.14
Generalized 0.05 0.05 0.05 0.05

MethodnCase: k = 100; n = 100

ML 0.07 0.07 0.07 0.06
REML 0.06 0.06 0.06 0.06
Generalized 0.05 0.05 0.05 0.05

4.6 INFERENCE ABOUT THE MEAN

In some applications the parameter of primary interest might be the mean
� while in some other applications �2� might be of more importance. In all
applications the mean and the two variance components �2� and �

2
� all are of

some importance. In any case �rst consider the problem of making inferences
about the mean �. Consider the problem in general for the unbalanced case
where we have unequal sample sizes from the k groups.
From (4.2) we get

Y i = � + �i + �i;

and in turn that

Y i � N(�; �2� + �2�=ni); i = 1; � � � ; k . (4.24)
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It is obvious (see also Exercise 3.1) from (4.24) that if the weights were known,
then the MLE of � is the weighted sample mean

Y =

kP
i=1

wiY i

kP
i=1

wi

:

But the parameter �� appearing in the de�nition of wi is unknown, and it
needs to be estimated with the aid of (4.6). Before we address this issue,
note that in the balanced case the weighted sample mean reduces to a simple
average of sample means, a quantity having no unknown parameters. In the
balanced case, making inferences on � is trivial as they follow from the results

Y � N(�;
1

k
(�2� + �2�=n))

and (4.6), which implies that

(Y � �)

s
N(k � 1)
SB

� tk�1: (4.25)

4.6.1 The unbalanced case

When the sample sizes are unequal, procedures for making inferences about �
can be obtained by taking the generalized approach. To do this we can start
with the distribution of Y given by

Y (��) � N(�;
�2�

kP
i=1

wi(��)

): (4.26)

To make inferences on � by taking the generalized approach, we can use the
distributional results

Z =
Y (��) � �

��

vuut kX
i=1

wi(��);

W1 =
SE
�2�

� �2k�1 and W2 =
SwB(��)

�2�
� �2k�1: (4.27)

Hence,

�2� =
SE
W1

and �� =S
�1
wB(

W2SE
W1

):
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Now by applying the substitution method we can obtain a potential general-
ized pivotal quantity as

R = y(s�1wB(
W2sE
W1

))� Z
vuuut

sE
W1

kP
i=1

wi(s
�1
wB(

W2sE
W1

)

;

= y(s�1wB(
SwB(��)sE

SE
))� (Y � �)

vuuuuuut
sE

kP
i=1

wi(��)

SE
kP
i=1

wi(s
�1
wB(

SwB(��)sE
SE

)

: (4.28)

From the �rst representation of R above it is clear that the distribution R
is free of unknown parameters. From the second representation it is clear
that its observed value, Robs = �, does not depend on nuisance parameters.
Therefore, R is indeed a generalized pivotal quantity. Moreover T = R� � is
a generalized test variable, which is stochastically decreasing in �.
Now any type of generalized con�dence interval or test could be based on

R. For example, if a constant k is chosen to satisfy the equation


 = Pr(R � r
); (4.29)

then � � r
 is a 100
% generalized con�dence interval for �. The quantiles
of the distribution of R can be easily found by simulating the distribution of
R using random numbers from the standard normal random variable Z and
the chi-squared random variables W1 and W2. It can be deduced from this
con�dence interval or derived from T that the generalized p-value for testing
hypotheses of the form H0 : � � �0 is

p = 1� Pr(R � �0): (4.30)

4.7 TWO-WAY MIXED MODEL WITHOUT REPLICATES

When the design is balanced, the above results can be easily extended to the
case of one �xed e¤ect and one random e¤ect. To do this, suppose we have
data from a two-way layout without replicates as shown in the table below.
Suppose in the design of the experiment, the levels of factor A are randomly
chosen from a population of possible levels. Suppose we are interested in the
�xed e¤ects of the factor B. This design is used, for instance, in the classical
randomized block design, where blocking is introduced for the purpose of
reducing the error variance.
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Two-way layout

A and B Levels B1 : : : Bj : : : Bn Means

A1 y11 : : : y1j : : : y1n y1:
A2 y21 : : : y2j : : : y2n y2:
� � � � � � � � � � � � � � � � � � � � �
Ai yi1 : : : yij : : : yin yi:
� � � � � � � � � � � � � � � � � � � � �
Ak yk1 : : : ykj : : : ykn yk:

Means y:1 : : : y:j : : : y:n y

Let B1; B2; : : : ; Bn be the levels of factor B and we have k levels of the
random e¤ect A. In the two-way layout with no replicates we have just one
data for each combination of factor levels. Suppose the observations obtained
from this design follow the linear model

Yij = � + �i + �j + �ij ; i = 1; : : : ; k; j = 1; : : : ; n; (4.31)

where �i is the ith e¤ect of random factor A and �j is the jth e¤ect of factor

B standardized such that
nP
j=1

�j = 0. Assume that

�ij � N(0; �2�) and that �i � N(0; �2�); (4.32)

We are interested in comparing the treatment means and also making inference
about the variance component �2�. Let Y i:and Y :j denote the column and row
means of the above table. Let Y be the average of all kn data. As in the case
of the two-way ANOVA �xed e¤ects given in the Appendix, here also we can
base our analysis on the sum of squares decomposition

ST = SA + SB + SE ;

where

ST =

kX
i=1

nX
j=1

(Yij � Y )2; (4.33)

SA = n
kX
i=1

(Y i: � Y )2; (4.34)

SB = k
nX
j=1

(Y :j � Y )2; (4.35)

and
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SE =
kX
i=1

nX
j=1

(Yij � Y i: � Y :j + Y )2 : (4.36)

It is easily derived or deduced from the normal distribution theory that each
of these random variables can be transformed into chi-squared random vari-
ables and that SA; SB , and SE are independently distributed. For example,
averaging (4.31) j over, we get

Y i: � N(�; �2� +
�2�
n
);

which implies that
SA

�2� + n�2�
� �2k�1: (4.37)

Similarly, the distribution of SB is obtained by �rst averaging over i, and then
over j to get

Y :j � Y = �j + (�:j � �):

This equation implies that

SB � k
nP
j=1

�2j

�2�
� �2n�1: (4.38)

Similarly, we can obtain the distribution of SE as

SE
�2�

� �2(n�1)(k � 1): (4.39)

As displayed in Table 3.4 and Table 3.5, these results can be summarized in
the form of an ANOVA table.

Table 4.4 Two-way ANOVA mixed model: Expected values

Source DF SS E(SS)

� k � 1 sA (k � 1)(�2� + n�2�)

� n � 1 sB (n� 1)�2� + k
nP
j=1

�2j

Error (n� 1)(k � 1) sE �2�

Total nk � 1 sT

It is clear from the ANOVA table that the hypothesis of zero variance
due to Factor A and the hypothesis of no e¤ect due to Factor B, namely
H0 : �1 = �2 = ::: = �n both can be tested using F -tests. The
computation of the F -Values are summarized in Table 3.6. For example, H0
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is rejected at the � level if FB > F�, where F� is the (1 � �)th quantile
of the F -distribution with n � 1 and (n � 1)(k � 1) degrees of freedom.
Testing of nonzero variance components could be carried out as in Section 3.3
by taking the generalized approach. In fact tests and intervals on �2� could be
deduced from the results that we will establish in Chapter 4 for any variance
component that follows the canonical form of the distributional structure. In
the current problem, the distributional results (4.37) and (4.39) implies that
the variance component follows the canonical form.

Two-way ANOVA mixed model: F -values

Source DF SS MS F -Value

� k � 1 sA MSA =
sA
k�1 FA =

MSA
MSE

� n � 1 sB MSB =
sB
n�1 FB =

MSB
MSE

Error (n� 1)(k � 1) sE MSE =
sE

(n�1)(k � 1)

Total nk � 1 sT

Example 3.3. Mileage variance due to driver

The table below shows a set of hypothetical data on highway mileage (average
miles per gallon) obtained by a random sample of seven operators driving
a certain model of a compact car on three type of tra¢ c conditions, light,
average, and heavy (yet without full congestion at any part of the highway).
In the table, the three levels of tra¢ c conditions are denoted as T1; T2; T3,
respectively.

Driver mileage by tra¢ c condition

DrivernTra¢ c T1 T2 T3

D1 30.3 28.7 24.7
D2 29.9 28.9 25.4
D3 31.4 27.6 26.2
D4 29.2 30.1 29.1
D5 28.9 23.9 20.7
D6 30.7 32.1 27.2
D7 28.4 30.2 27.4

It is obvious in this example that the mileage under di¤erent tra¢ c conditions
are di¤erent and that it is decreasing with the tra¢ c condition. We can carry
out a formal ANOVA assuming a two-way mixed e¤ects model with random
e¤ects due to the drivers and �xed e¤ects due to the tra¢ c conditions. The
ANOVA with F -Values for testing the signi�cance of each of these factors is
shown below.
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ANOVA for driver and tra¢ c e¤ects

Source DF SS MS F -Value

Driver 6 56:63 9:45 3:43
Tra¢ c 2 60:74 30:37 11:02
Error 12 33:08 2:76

Total 21 sT

The p-value for testing the hypothesis of zero variance due to driver is p =
1�H6;12 (3:43) = 0:033, implying that we have su¢ cient evidence to reject the
hypothesis and conclude that there is a variation of mileage due to the driver.
The point estimate of its variance component is b�2� = (MSA �MSE)=n =
(9:45� 2:76)=2 = 3:35. The p-value for testing the equality of tra¢ c e¤ects is
p = 1�H2;12 (11:02) = 0:002. As expected, the hypothesis needs to be rejected
since the tra¢ c e¤ects on the mileage is highly signi�cant. The estimated
tra¢ c e¤ects at the light, the average, and the heavy tra¢ c conditions are
29:8, 28:8, and 25:8, respectively.
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Exercises

4.1 Let Yi be an observation from the normal distribution

Yi � N(�; �2�=wi); i = 1; : : : ; k:

If Yi; i = 1; : : : ; k are independently distributed and wi; i = 1; : : : ; k; is a set
of known weights, show that

Y =

kP
i=1

wiYi

kP
i=1

wi

is the maximum likelihood estimate (MLE) of the parameter �. Also derive
the MLE of �2� .

4.2 Consider again the random sample given in Exercise 3.1. Find the dis-
tributions of the estimates of � and �2� . Are they independently distributed?
Establish the form of con�dence intervals for the parameter � = �+ ��.

4.3 Consider the one-way random e¤ects model with unequal sample size
considered in Section 3.1. Establish a procedure for testing hypotheses con-
cerning the parameter

� =
�

�� + ��
:

Deduce 100
% generalized con�dence intervals for �.

4.4 Show that the error sum of squares de�ned by (4.36) has the chi-squared
distribution

SE
�2�

� �2(n�1)(k � 1):

4.5 The table below shows the highway mileage under average tra¢ c con-
ditions obtained by a random sample of four operators by driving a certain
model of a midsize car on 15 di¤erent test drives. Assuming a one-way ran-
dom e¤ects model with the variance components �2� and �

2
�,

(a) construct the equal-tail 99% con�dence interval for the error variance �2� ,
(b) �nd the unbiased estimate of �2� based on the su¢ cient statistics.
(c) �nd the estimate of �2� based on its 50% con�dence bound,
(d) �nd the equal-tail 99% generalized con�dence interval for the factor vari-
ance �2�,
(e) test the null hypothesis, H0 : �2� � 2,
(f) construct the equal-tail 95% con�dence interval for the mean mileage of
the midsize car.
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Driver 1 Driver 2 Driver 3 Driver 4

27 22 23 23
25 24 24 25
28 24 19 21
26 28 27 23
22 21 19 18
29 20 24 24
25 21 28 22
27 19 18 20
23 21 22 25
28 20 24 24
28 28 24 20
26 18 18 17
28 25 26 25
29 28 23 24
23 30 19 29

4.6 Weerahandi (1995) reported the data shown in table below. They rep-
resent the sample means and the sample variances weights of 20 babies born
in each of the eight hospitals.

Hospital

H1 H2 H3 H4 H5 H6 H7 H8

y: 7.6 8.3 7.5 7.8 8.5 7.9 7.8 7.2
s2i 2.1 2.3 2.2 1.9 2.1 2.0 2.1 2.0

Assuming a one-way random e¤ects model, establish the ANOVA table for
making inferences about the variance components.

4.7 Consider again the data set in Exercise 3.6. Assuming a one-way ran-
dom e¤ects model,

(a) construct the equal-tail 95% con�dence interval for the error variance �2� ,
(b) construct the left-sided 95% generalized con�dence interval for the factor
variance �2�,
(c) test the null hypothesis, H0 : �2� � 1,
(d) construct the equal-tail 95% con�dence interval for the mean weight of
babies.

4.8 Consider the data in Table 3.1. Assuming a one-way random e¤ects
model construct a 95% equal-tail generalized con�dence interval for the mean
power consumption.

4.9 The data given in table below are reported by Swallow and Searle
(1978). They are the weights of a sample bottles from �ve groups of veg-
etable oil.
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Group A: 15.75 15.82 15.75 15.71 15.84
Group B: 15.70 15.68 15.64 15.60
Group C: 15.68 15.66 15.59
Group D: 15.69 15.71
Group E: 15.65 15.60

Assuming a one-way random e¤ects model,

(a) construct 95% con�dence intervals for each variance component, (b) con-
struct a 95% con�dence interval for the mean weight, (c) test the hypothesis
that the mean weight is at least 15.7.

4.10 Consider again the data set in Exercise 3.9. If the groups are not
randomly selected from a population of vegetable oil bottles, discuss the un-
derlying statistical problem and analyze the data.

4.11 The table below shows a hypothetical data set from an experiment
designed to estimate the e¤ect of temperature setting T on the power con-
sumption of a certain brand of refrigerators. Assuming a two-way mixed
e¤ects model with the �xed e¤ect T , the variance component �2� due to unit-
to-unit variation, and the variance component �2� due to the refrigerator load
L,

(a) construct the equal-tail 95% con�dence interval for the error variance �2� ,
(b) �nd the unbiased estimate of �2� based on the su¢ cient statistics,
(c) �nd the estimate of �2� based on its 50% con�dence bound,
(d) estimate the mean power consumption at each of the three temperature
settings,
(e) test the hypothesis that the temperature setting has no signi�cant e¤ect.

Load T1 T2 T3

L1 9.9 10.2 12.8
L2 10.5 9.8 13.1
L3 10.6 11.4 15.8
L4 9.2 15.2 12.70
L5 8.9 13.2 10.7
L6 10.7 12.0 11.2
L7 8.4 10.2 11.4





CHAPTER 5

HIGHER-WAY MIXED MODELS

5.1 INTRODUCTION

In many practical applications we need to deal with a number of factors
of random e¤ects and �xed e¤ects. Hence we will have the need to make
inferences about a number of variance components. As we will discuss below,
in some applications we will also have to make inferences about, not only
on the individual variance components, but also on functions of a number of
variance components. The purpose of this chapter is to develop methodologies
to tackle such problems in a general manner so that results would apply to a
wide class of higher-way mixed models. To make this possible in this chapter
we assume that we have observations from a balanced higher-way design.
As an example of a higher-way mixed model, consider again the problem

of making inferences about the factors a¤ecting the power consumption of
a certain brand of refrigerators. To make inferences about the mean power
consumption and factors a¤ecting the power consumption, we could carry out
an experiment under various conditions on the refrigerator load, internal tem-
perature levels, and external temperature levels simulating ceratin household
temperature conditions during various seasons. Although individual levels of

(Generalized Inference in Repeated Measures, Edition 2). By (Weerahandi)
Copyright c
 2013 John Wiley & Sons, Inc.
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such conditions are important and usually not reported they do contribute to
the variance and its structure. They constitute random e¤ects representing,
unit to unit variation, variations due to the two sets of temperatures, the
variation due to the refrigerator load, and so on. To estimate the variance
components and the mean power consumption, we could setup the experiment
according to a certain design to enable estimation of each individual variance
component or some of them. Table 4.1 shows a set of hypothetical data in a
scaled unit that would allow us to estimate just three variance components,
namely the variation due to internal temperature setting, the load, and the
unit to unit variation (including the random unexplained variation). The lev-
els of the refrigerator load is chosen at random from a set of typical loads.
The particular values of the load are of no particular interest as they are not
usually included in energy e¢ ciency reports. In designing the experiment,
the temperature settings can be chosen at some desires levels such as low,
medium, and high (very cold) or at some randomly chosen levels depending
on the need. If the levels are randomly selected, the data in Table 4.1 should
be modeled as a two-way random e¤ects model and otherwise they should be
modeled as a two-way mixed e¤ects model. If external temperature is also
controlled and observations are taken when it is set at a number of levels,
then the data from the experiment should be treated as a three-way random
e¤ects model or a three-way mixed model depending on the way the levels of
the factors are chosen.

Table 5.1 Power consumption of refrigerators

Temperature
Load T1 T2 T3

L1 11.9, 11.3, 9.90 12.6, 12.2, 12.4 12.5, 12.2, 11.4
L2 11.7, 12.2, 10.9 12.7, 13.9, 13.9 11.6, 13.1, 12.5
L3 11.8, 10.1, 11.1 12.9, 12.2, 12.9 12.8, 13.4, 12.8

5.2 CANONICAL FORM OF THE PROBLEM

In most balanced random e¤ects models, the underlying inference problem on
variance components can be reduced by means of a sum of squares decompo-
sition into a problem having a common structure. Therefore methods of infer-
ence can be developed and presented in a form that is valid for any variance
component in a higher-way balanced mixed model following the structure. A
variance component �2a in a model is said to have the canonical form of a
variance component if the su¢ cient statistics for making inferences about the
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variance component have distributions of the form

V =
Sa

�2 + A�2a
� �2a and W =

Sb
�2

� �2b , (5.1)

where �2 is a nuisance parameter, typically a linear combination of some other
variance components including or excluding the error variance, Sa and Sb are
some sums of squares of deviations, A is a known constant, and a and b are
the degrees of freedom of the two chi-squared distributions. Similarly, in a
balanced mixed model, a factor of �xed e¤ects with levels B1; B2; : : : ; Bn
having �xed e¤ects � = (�1; �2; : : : ; �n)

0 is said to have the canonical form
of a �xed e¤ect if the su¢ cient statistics for making inferences about the
variance component have distributions of the form,

U =

Sc � B
nP
j=1

�2j

�2
� �2c and W =

Sb
�2

� �2b , (5.2)

where �2 is a nuisance parameter, typically a linear combination of the vari-
ance components, Sc and Sb are some sums of squares of deviations, B is a
known constant, and c and b are the degrees of freedom of the two chi-squared
distributions. These canonical forms are further illustrated by the following
applications.

5.2.1 Two-Way random e�ects model

In many industrial experiments, often we need to deal with designs involving
two-way random e¤ects. As a speci�c example, consider the data set in Table
4.2 reported by Montgomery (1991) and Montgomery and Runger (1993a)
pertaining to an important class of applications in the assessment of measure-
ment systems. In this class of applications, an experiment known as a gauge
R & R study is performed. As applied to the case of ideal setting of this class,
p parts from a population of parts made by a certain process are randomly
chosen. Then, it involves choosing o operators at random from a population
of operators and having each operator measure each part n times. In the data
set presented in Table 4.2, there are p = 20 parts, o = 3 operators, and n = 2
measurements leading to 60 observations.
Let Yijk denote the observations from a two-way random e¤ects model with

two random factors A and B. Suppose in the design of the experiment A is
set to take I random levels and B is set to take J random levels. Allowing
interaction between the two factors as well, assume the linear model

Yijk = �+ �i + �j + 
ij + �ijk; (5.3)

i = 1; : : : ; I; j = 1; : : : ; J ; k = 1; : : : ;K;
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Table 5.2 Assessing measurement systems

Operator
1 2 3

Meas. 1 Meas. 2 Meas. 3
Part 1 2 1 2 1 2

1 21 20 20 20 19 21
2 24 23 24 24 23 24
3 20 21 19 21 20 22
4 27 27 28 26 27 28
5 19 18 19 18 18 21
6 23 21 24 21 23 22
7 22 21 22 24 22 20
8 19 17 18 20 19 18
9 24 23 25 23 24 24
10 25 23 26 25 24 25
11 21 20 20 20 21 20
12 18 19 17 19 18 19
13 23 25 25 25 25 25
14 24 24 23 25 24 25
15 29 30 30 28 31 30
16 26 26 25 26 25 27
17 20 20 19 20 20 20
18 19 21 19 19 21 23
19 25 26 25 24 25 25
20 19 19 18 17 19 17

where �i is the e¤ect due to the ith level of A, where �j is the e¤ect due to
the jth level of B, and 
ij is due to their interactions. Also assume that

�i � N(0; �2�); �j � N(0; �2�);

ij � N(0; �2
); and �ijk � N(0; �2�):

As in the two-way �xed e¤ects model it is also assumed that, �i, �j , 
ij , and
�ijk are independently distributed.
An ANOVA for this model can also be established similar to the results in

Chapter 3 by �rst decomposing the total sums of squares of deviations into
orthogonal components as

ST = S� + S� + S
 + Se; (5.4)

where

ST =
IX
i=1

JX
j=1

KX
k=1

(Yijk � Y )2; (5.5)
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S� = JK
IX
i=1

(Y i: � Y )2; (5.6)

S� = IK
JX
j=1

(Y :j � Y )2; (5.7)

S
 = K
IX
i=1

JX
j=1

(Y ij � Y i: � Y :j + Y )2; (5.8)

and

Se =
IX
i=1

JX
j=1

KX
k=1

(Yijk � Y ij)
2: (5.9)

Table 4.3 displays the ANOVA table based on these sums of squares, with
which we can make inferences about all of the variances components. The
sums of squares of deviations are denoted in the table by S with appropriate
subscripts. The mean sums of squared deviations are denoted by MS, which
are de�ned as the sum of squares divided by the associated degrees of freedom.
More speci�cally, they are de�ned as

MS� = S�=DF� :

Table 5.3 ANOVA for the two-way random e�ects model

Source DF SS E(MS)

Factor A I � 1 S� �1 = JK�
2
� +K�

2

 + �

2
�

Factor B J � 1 S� �2 = IK�
2
� +K�

2

 + �

2
�

A � B (I � 1)(J � 1) S
 �3 = K�
2

 + �

2
�

Error IJ(K � 1) Se �4 = �
2
�

Total IJK � 1 ST

It is easy to establish the expected values appearing in the ANOVA table
from the distribution of sums of squares given by the normal theory (see
Appendix A.6 more generally for the three-way mixed model) or by direct
evaluation. For example, starting from the equations

Y ij = �+ �i + �j + 
ij + �ij ;

Y i: = �+ �i + � + 
i + �i; Y :j = �+ �+ �j + 
j + �j ;
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and
Y = �+ �+ � + 
 + �;

we can obtain the expected value of S
 , and then that of MS
 ; as follows:

E(S
) = KE(
IX
i=1

JX
j=1

(Y ij � Y i: � Y :j + Y )2);

= KE(
IX
i=1

JX
j=1

((�j + 
ij + �ij � � � 
i � �i)

� (�j + 
j + �j � � � 
 � �))2)

= KE(
IX
i=1

JX
j=1

((
ij � 
i � 
j + 
) + (�ij � �i � �j + �))2)

= K

IX
i=1

JX
j=1

E(
ij � 
i � 
j + 
)
2 + E(�ij � �i � �j + �)2

= K(I � 1)(J � 1)(�2
 + �2�=K);

where the last equation follows from the known results from the classical two-
way ANOVA for �xed e¤ects. Note that the expected mean squares denoted
by � involve some or all the variance components �2� , �2�, �2
 ; and �2� thus
providing a basis for deriving estimates and signi�cance tests for the variance
components. As in Chapter 3, it is easy to show that (see Appendix A.5)
their distributions are related to the chi-squared distributions as

S�=�1� �2I�1; (5.10)

S�=�2� �2J�1; (5.11)

S
=�3� �2(I�1)(J�1); (5.12)

Se=�4� �2IJ(K�1)): (5.13)

The distributions can be derived directly form the normal theory or deduced
from known results available for the conventional two-way ANOVA. For ex-
ample, the distribution of S
 follows from the identity

Y ij � Y i: � Y :j + Y = eij � ei � ej + e;

and from known results in the two-way ANOVA model without replications,
where

eij = 
ij + �ij �N(0; �2
 +
�2�
K
):

Now it is evident that each of the three variance components �2�; �2� ; and
�2
 have the canonical form of a variance component. In making inferences
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about the variance components, we set the quantities of the canonical form in
(5.1) to the values shown in the following table.

Canonical forms for the variance components

Inference on �2a = �2
 �2� �2�

�2 = �2� K�2
 + �
2
� K�2
 + �

2
�

Sa = S
 S� S�
Sb = Se S
 S

A = K JK IK
a = (I � 1)(J � 1) I � 1 J � 1
b = IJ(K � 1) (I � 1)(J � 1) (I � 1)(J � 1)

5.2.2 Two-Way mixed e�ects model

Suppose the data in Table 4.1 is taken when the internal temperature is set at
three desired levels, say T1 representing the low level (cold), T2 representing
the medium level (colder), and T3 representing the high level (coldest). Then
the design constitutes a two-way mixed model. In general, suppose we have
an experimental design with one random factor A taking on I random levels
and a second factor B taking on J �xed-levels. Again we assume that we have
obtained data from a balanced two-way cross-classi�ed design with Yijk; k =
1; : : : ;K denoting the observations taken from the ijth cell. Assume the linear
model

Yijk = �+ �i + �j + 
ij + �ijk; (5.14)

with �j now representing main e¤ect due to jth level of factor B. Further, as
before, assume that all the random e¤ects are normally distributed with zero
means. More speci�cally, assume that

�i � N(0; �2�); 
ij � N(0; �2
); and �ijk � N(0; �2�);

Without loss of generality assume that the �xed e¤ects are measured as de-

viations from the overall mean so that they satisfy the equation
JP
j=1

�j = 0.

It is easily veri�ed that the above model also satisfy the orthogonal decom-
position (5.4) of sums of squares of deviations with the same de�nition of the
sums of squares. In this case, however, the ANOVA table needs to be changed
as shown in Table 4.4 below.
For example, starting from the equations Y ij = �+�i+ �j + 
ij + �ij and

Y :j = �+ �+ �j + 
j + �j , the expected value of S� , and then that of MS� ,
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Table 5.4 ANOVA for the two-way mixed model

Source DF SS E(MS)

Factor A I � 1 S� �1 = JK�
2
� + �3

Factor B J � 1 S� �2 = IK

JP
j=1

�2j

J�1 + �3
A � B (I � 1)(J � 1) S
 �3 = K�

2

 + �

2
�

Error IJ(K � 1) Se �4 = �
2
�

Total IJK � 1 ST

could be obtained using the result

S� = IK
JX
j=1

(Y :j � Y )2

= IK
JX
j=1

[�j + (
j � 
) + (�j � �)]2:

Moreover, the orthogonal decomposition of the sums of squares of deviations
also lead to the distributional results

S�
�1
� �2I�1; (5.15)

S��IK
JP
j=1

�2j

�3
� �2J�1; (5.16)

S

�3
� �2(I�1)(J�1); (5.17)

Se
�4
� �2IJ(K�1)): (5.18)

Now it is evident that each of the three variance components �2�; �2� ; and
�2
 have the canonical form of a variance component. In making inferences
about the variance components, we set the quantities of the canonical form in
(5.1) to the values shown in the following table.
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Canonical form for the variance components

Inference on �2a = �2
 �2�

�2 = �2� K�2
 + �
2
�

Sa = S
 S�
Sb = Se S

A = K JK
a = (I � 1)(J � 1) I � 1
b = IJ(K � 1) (I � 1)(J � 1)

Similarly, in making inferences about the �xed e¤ects, we set the quantities
of the canonical form in (5.2) to the values shown in the following table.

Canonical form for the �xed e¤ects.

Inference on: �

�2 = K�2
 + �
2
�

JP
j=1

�2j=
JP
j=1

�2j

Sc = S�
Sb = S

B = IK
c = J � 1
b = (I � 1)(J � 1)

Example 4.1. Analysis of energy consumption

Consider the data set reported in Table 4.1. The load levels are randomly
chosen and so they leads to random e¤ects. Depending on the way the tem-
perature levels are chosen they are �xed e¤ects or random e¤ects. Then, the
model appropriate for analyzing the data is either a two-way random e¤ects
model or a two-way mixed model, respectively. In either case the analysis
can be based on the ANOVA table shown below; the last column of the table
represents the usual mean sums of squares de�ned as

MS =
SS

DF
:

Source DF SS MS

Load 2 2:090 1:045
Temperature 2 13:354 6:677
Load � Temperature 4 1:997 0:499
Error 18 7:820 0:434
Total 26 25:261



122 HIGHER-WAY MIXED MODELS

5.2.3 Three-way mixed e�ects model

Above results can be easily extended to higher-way random e¤ects models
and mixed e¤ects models. For example, in the experiment on the power
consumption of refrigerators the design becomes a three way mixed model if we
simulate room temperature as well. This is also the case if power consumption
is measured by a number of operators using the same or a number of units
of the same brand of a measuring device. Table 4.5 shows the nature of data
from such experiments. In this type of application, while factors such as the
internal temperature setting should be treated as �xed e¤ects, the load and
the operator e¤ects should be treated as random e¤ects. In conducting the
experiment, the levels of the factors should be selected accordingly.

Table 5.5 Energy consumption by three factors

Temperature
Load Operator T1 T2 T3

L1 O1 11.8, 11.2, 10.9 12.4, 12.1, 12.6 12.4, 12.2, 11.6
L1 O2 10.9, 10.8, 9.80 11.6, 11.3, 12.1 12.1, 12.5, 12.4

L2 O1 10.7, 11.3, 10.8 12.5, 13.8, 12.9 12.6, 12.4, 12.7
L2 O2 11.8, 11.2, 9.90 11.7, 13.1, 12.9 11.8, 12.1, 12.1

L3 O1 11.9, 11.1, 10.3 11.9, 12.4, 12.6 12.4, 13.8, 13.1
L3 O2 11.4, 10.5, 10.1 12.1, 13.2, 12.4 13.2 13.1, 12.9

Let A, B, and C be the three factors of a three-way cross classi�ed design.
First suppose we have more than one observation, say L observations, from
each combination of factor levels. Let Yijkl be lth observation from the factor
level combination (Ai,Bj ; Ck). Suppose in the design of the experiment A is
set to take I random levels and B is set to take J �xed-levels and C is set to
take K random levels. For example, in Table 4.5, A = L; B = T; C = O; I =
3; J = 3; K = 2; and L = 3. Allowing all possible interactions, assume the
linear model

Yijkl = �+ (�i + �j + �k) + (��ij + ��ik + ��jk)

+ ���ijk + �ijkl; (5.19)

i = 1; : : : ; I; j = 1; : : : ; J ; k = 1; : : : ;K; l = 1; : : : ; L;

where �i is the e¤ect due to the ith random level of A, �j is the �xed e¤ect due
to the jth level of B, and �k is the random e¤ect due to kth level of C. The
terms such as ��ij represent the two way intersections and ��� denotes the
interaction between all three factors. As in the two-way mixed e¤ects model,
assume that the �xed e¤ects are measured as deviations from the overall mean

so that they satisfy the equation
JP
j=1

�j = 0.
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It should be emphasized that, unless there are a large number of replicates,
it is a not necessarily a good idea to allow too many interaction terms. For
instance, too many interaction terms could lead to loss of power in making
inferences about the main e¤ects. When it is reasonable to assume that there
is no signi�cant interaction between certain factor levels, they can be dropped
from the model. For example in the above example, on one hand there is no
reason why there should be any interaction between the operators and loads,
and on the other hand we expect that the e¤ect of the temperature on the
power consumption to depend on the load. In that case the appropriate model
could be expressed as

Yijkl = �+ �i + �j + �k + ��ij + �ijkl: (5.20)

In applications with no replicates also�that is, when L = 1� we need to work
with model (5.20) and replace Yijkl by Yijk.
In any case we can proceed with the general model (5.19) and develop

the ANOVA. As it will become clear later, we will be able to obtain tests
appropriate for model (5.20) by pooling sums of squares and degrees of free-
doms available from the general ANOVA. Proceeding with the general model,
assume that

�i � N(0; �2�);
�k � N(0; �2�); (5.21)

��ij � N(0; �2��);

��ik � N(0; �2��);

��jk � N(0; �2��);

���ijk � N(0; �2���);
and

�ijkl � N(0; �2�);
which de�ne the underlying variance components as well. Continuing with
the usual terminology, let us denote various sample means of the data by
Y i::; Y :j:; Y ::k; Y ij:; Y :jk; Y i:k; and Y ijk; depending on the indices with respect
to which the average is taken. For example, Y i::is de�ned as

Y i:: =

JP
j=1

KP
k=1

LP
l=1

Yijkl

JKL

and Y :jk is de�ned as

Y :jk =

IP
i=1

LP
l=1

Yijkl

IL
:
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Let us continue to denote the grand average of all the data by Y . To present
the ANOVA table for the three-way mixed model, consider as usual the de-
composition of the total sums of squares of deviations

ST = (S� + S� + S�) + (S�� + S�� + S��) + S��� + Se (5.22)

suggested by the model (5.19) and the identity

(Yijkl � Y ) = (Y i:: � Y ) + (Y :j: � Y ) + (Y ::k � Y )
+(Y ij: � Y i:: � Y :j: + Y ) + (Y i:k � Y i:: � Y ::k + Y )
+ (Y :jk � Y ;j: � Y ::k + Y ) + (Y ijk � (Y ij: + Y i:k + Y :jk)
+ (Y i:: + Y ::k + Y :j:)� Y ) + (Yijkl � Y ijk);

where

ST =
IX
i=1

JX
j=1

KX
k=1

LX
l=1

(Yijkl � Y )2;

S� = JKL

IX
i=1

(Y i:: � Y )2;

S� = IKL
JX
j=1

(Y :j: � Y )2;

S� = IJL
KX
k=1

(Y ::k � Y )2;

S�� = KL

IX
i=1

JX
j=1

(Y ij: � Y i:: � Y :j: + Y )2;

S�� = JL

IX
i=1

KX
k=1

(Y i:k � Y i:: � Y ::k + Y )2;

S�� = IL
JX
j=1

KX
k=1

(Y :jk � Y :j:: � Y ::k + Y )2;

S��� = L
IX
i=1

JX
j=1

KX
k=1

fY ijk � (Y ij: + Y i:k + Y :jk)

+(Y i:: + Y ::k + Y :j:)� Y g2;

and
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Se =
IX
i=1

JX
j=1

KX
k=1

LX
l=1

(Yijkl � Y ijk)2:

Table 4.6 displays the ANOVA table based on these sums of squares, with
which we can make inferences about all of the variances components.

Table 5.6 ANOVA for the three-way mixed model

Source DF SS E(MS)

Factor A I � 1 S� �3 + JKL�
2
�

Factor B J � 1 S� �2 + IKL

JP
j=1

�2j

J�1
Factor C K � 1 S� �1 + IJL�

2
�

A � B (I � 1)(J � 1) S�� �1 = �4 +KL�
2
��

A � C (I � 1)(K � 1) S�� �2 = �4 + JL�
2
��

B � C (J � 1)(K � 1) S�� �3 = �4 + IL�
2
��

A � B �C (I � 1)(J � 1)(K � 1) S��� �4 = �
2
� + L�

2
���

Error IJK(L� 1) Se �2�
Total IJKL� 1 ST

Moreover, as suggested by the ANOVA table, each sum of squares is related
to a chi-squared distribution:

S�
�3 + JKL�

2
�

� �2I�1;

S� � IKL
JP
j=1

�2j

�2
� �2J�1;

S�
�1 + IJL�

2
�

� �2K�1;

S��
�1
� �2(I�1)(J�1);

S��
�2

� �2(I�1)(K�1);

S��
�3

� �2(J�1)(K�1);

S���
�4

� �2(I�1)(J�1)(K�1);

Se
�2�
� �2IJK(L�1):
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The derivations of the results are similar to the two-way mixed model. For
example, the expected value and the distribution of S� is easily seen from the
identity

(Y i:: � Y ) = (�i � �) + (��i � ��) + (���i � ���) + (�i � �):
Details of the derivation is given in Appendix A.6. The sums of squares are
independently distributed due to the orthogonal decomposition (5.22).
Now it is evident that all the variance components of the model have the

canonical form. To present them in a compact manner, de�ne I1 = I�1; J1 =
J � 1; K1 = K � 1; and L1 = L � 1: Then, in making inferences about
the variance components of a three way mixed model, various quantities
appearing in the canonical form in (5.1) are set to the values shown in the
following table..

Canonical form for the variance components

Inference on �2a = �2� �2� �2�� �2�� �2�� �2���

�2 = �3 �1 �4 �4 �4 �2�
Sa = S� S� S�� S�� S�� S���
Sb = S�� S�� S��� S��� S��� Se
A = JKL IJL KL JL IL L
a = I1 K1 I1J1 I1K1 J1K1 I1J1K1

b = J1K1 I1J1 I1J1K1 I1J1K1 I1J1K1 IJKL1

Similarly, in making inferences about the �xed e¤ects, we set the quantities
of the canonical form in (5.2) to the values shown in the following table.

Canonical form for the �xed e¤ects

Inference on: �

�2 = �2 = �
2
� + L�

2
���+JL�

2
��

JP
j=1

�2j=
JP
j=1

�2j

Sc = S�
Sb = S��
B = IKL
c = J � 1
b = (I � 1)(K � 1)

5.3 TESTING FIXED EFFECTS

Consider the problem of testing the di¤erence in �xed e¤ects of a balanced
mixed model. Suppose the �xed e¤ects of interest have the canonical form

U =

Sc � B
nP
j=1

�2j

�2
� �2c and W =

Sb
�2

� �2b ,
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where �2 is a nuisance parameter, Sc and Sb are certain sums of squares of
deviations, and B is a known constant. Consider the problem of testing the
null hypothesis

H0 : �1 = �2 = � � � = �n = 0
against the natural alternative hypothesis. Under the null hypothesis, the
distribution of the random variable U becomes

U =
Sc
�2

� �2c

and hence

F =
U=c

W=b
=
Sc=c

Sb=b
� Fc;b:

Moreover, if the null hypothesis is not true, then F has a noncentral F distri-
bution. It is now evident that the p-value appropriate for testing H0 is

p = 1 � Hc;b

�
sc=c

sb=b

�
; (5.23)

where Hc;b is the cdf of the F distribution with c and b degrees of freedom.

Example 4.2. Analysis of energy consumption (continued)

Consider again the data set reported in Table 4.1 and assume that the temper-
ature levels had been set at some desired levels so that the model appropriate
for analyzing the data is a two-way mixed model. The hypothesis of equal
temperature e¤ects can be tested based on the ANOVA given in Example 4.1.
The p-value for testing the hypothesis computed using (5.23) is then

p = 1�H2;4
�
6:677

0:499

�
= 1�H2;4 (13:38) = 0:0169:

Hence, we can conclude that di¤erent temperature settings have di¤erent
e¤ects on the power consumption�colder the temperature setting, greater
the power consumption tend to be.

5.4 ESTIMATING VARIANCE COMPONENTS

Consider the problem of estimating variance component �2a and the variance
function �2 when it has the canonical form

V =
Sa

�2 + A�2a
� �2a (5.24)

and

W =
Sb
�2

� �2b ; (5.25)
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where Sa and Sb are certain sums of squares, A is a known constant. It is
straightforward to make any type of inference about the variance �2 based
on (5.25). For example, 100
% equal-tail con�dence bound for �2 is obtained
from the probability statements

Pr(
Sb
�2

� c 1�

2
) =

1� 

2

and Pr(
Sb
�2

� c 1+

2
) =

1 + 


2
;

where c� is the �th quantile of the chi-squared distribution with b degrees of
freedom. Obviously the resulting con�dence interval is

Sb
c 1+


2

� �2 � Sb
c 1�


2

: (5.26)

Moreover, the expression (5.25) implies that

E (Sb) = b�
2;

and hence b�2 =MSb = Sb
b

(5.27)

is the natural unbiased estimate of �2. Obviously it is also the MLE of �2.
The unbiased estimate of �2a can be obtained from (5.27) and from

E

�
Sa
a

�
= �2 + A�2a, (5.28)

which implies that MSa = Sa=a is an unbiased estimate for the parameter
�2 + A�2a. Equations (5.27) and (5.28) imply that

b�2a =
MSa � MSb

A
(5.29)

is an unbiased estimate of �2a. A major drawback of this unbiased estimate is
that it could become negative with some data sets. So, the estimate cannot
be considered reliable even when it is slightly positive. Since �2a is supposed
to be a nonnegative parameter, one can of course simply set b�2� = 0 in
(5.29) whenever MSa � MSb < 0, but this would make the estimate no
longer unbiased. The unbiased estimate is also closely related to the RMLE
(restricted maximum likelihood estimate) and the MLE [cf. Searle, Casella,
and McCulloch (1992)] of �2a. Despite these properties, all these estimates
su¤er from serious drawbacks. Neither the MLE nor the RMLE addresses
the true underlying problem which causes negative or zero estimates. In
fact, as we discussed in Section 3.4., compared with the unbiased estimate,
MLE based inferences actually have more serious problems in other types of
inferences such as testing of hypotheses and in interval estimation. Later in
this chapter we will address the problem of interval estimation of �2a, which
will give a clearer picture of the situation.
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Example 4.3. Analysis of Energy Consumption (continued). Consider again

the data set reported in Table 4.1 and assume that both the factors, the
load levels and temperature levels, are chosen randomly so that the model
appropriate for analyzing the data is a two-way random e¤ects model. For
both variance components we have A = 9; and the mean sums of squares were
presented in Example 4.1. The unbiased estimate of the variance component
of the load can be computed from the ANOVA table given in Example 4.1:

b�2L = (1:045� 0:499)=9
= 0:061:

Similarly, the unbiased estimate of the variance component of the temperature
is computed as

b�2T = (6:677� 0:499)=9
= 0:686:

5.5 TESTING VARIANCE COMPONENTS

Especially in dealing with variance components of random e¤ects models and
mixed models it is important to make inferences beyond the point estimation.
To outline the testing procedures, consider again the canonical form of the
model. The problem is not a trivial one, except for the case of testing zero
variance component, namely the case of testing H0 : �2a = 0, in which the
p�value is easily obtained from (5.24) as

p = 1 � Ha;b

�
sa=a

sb=b

�
: (5.30)

Of more interest and importance are one-sided null hypotheses of the form

H0 : �
2
a � �20: (5.31)

Exact tests for (5.31) based on a single test statistic do not exist. Exact tests
such as the one proposed by Healy (1961) involve an arti�cial randomization
device in addition to the experimental data. However, exact tests based on
an extreme region in the sample space formed by two test statistics, namely
both the statistics, Sa and Sb do exist. To see this, consider the subset of the
sample space de�ned by

C = f(Sa; Sb) j
Sa(�

2 sb
Sb

+ A�2a)

(�2 + A�2a)
� sag: (5.32)

Note that the observed sample point (sa; sb) falls on the boundary of the
sample space. To see that this is an extreme region and that its probability
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does not depend on nuisance parameters, we can express the subset in terms
of the chi-squared random variables V and W as

C = f V ( sb
W

+ A�2a) � sag:

Obviously, the probability of C increases for deviations from the null hypoth-
esis and its probability does not depend on �2, the nuisance parameter in the
current problem. The generalized test variable underlying this extreme region
is

T = V (sb=W + A�2a): (5.33)

The generalized p-value is the maximum probability of the extreme region
under the null hypothesis. It is computed as

p = Pr(Cj �2� = �20)

= Pr(V � sa=(
sb
W

+ A�20) )

= E

�
Ga(

sa
A�20 + sb=W

)

�
; (5.34)

where Ga is the cdf of the chi-squared distribution with a degrees of freedom
and the expectation is taken with respect to the chi-squared random variable
W � �2b . The uniqueness (up to equivalent p-values) of this test can be
established by invoking the principle of invariance. A formal derivation of the
result could be deduced from results in Weerahandi (1991). The expectation
appearing in (5.34) can also be expressed as an integral over a subset of the
interval [0, 1] with respect to a beta random variable. To do this, de�ne the
random variables

S = V +W � �2a+b and B = W=(V + W ) � Beta
�
b

2
;
a

2

�
; (5.35)

which are also independently distributed. Then, the p-value can be expressed
in terms of a well behaved integral as

p = Pr(V (
sb
W

+ A�20) � sa)

= Pr
�
S(1�B)( sb

SB
+A�20) � sa

�
= Pr(

sb
B
+ SA�20 �

sa
1�B )

=

1Z
sb

sa+ sb

Ga+b

�
1

A�20
(sa=(1�B) � sb=B)

�
fB(B) dB; (5.36)
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where Ga+b is the cdf of the chi-squared distribution with a + b degrees of

freedom and fB(B) is the density of function of the beta random variable B.

Example 4.4. Analysis of energy consumption (continued)

Consider the problem of testing the variance due to the refrigerator load using
the data in Table 4.1. The hypothesis of no variation in power consumption
due to the load can also be tested based on the ANOVA given in Example
4.1. The p-value for testing zero variance is

p = 1�H2;4
�
1:045

0:499

�
= 1�H2;4 (2:09)
= 0:239:

This p�value does not support rejection of the hypothesis. To illustrate for-
mula (5.34), also consider the problem of testing the hypothesis

H0 : �
2
L � 2 :5;

where �2L is the variance due to the load. The generalized p-value for testing
this hypothesis is computed as

p = E

�
G2(

2:099

9� 2:5 + 1:997=W
)

�
= 0:0437;

where the expectation is taken with respect toW � �24. The p-value suggests
that the null hypothesis can be rejected at the 0.05 level. It can also be
seen that there is not quite su¢ cient evidence to reject the null hypothesis
H0 : �

2
L � 1 since its generalized p-value is 0:101.

5.6 CONFIDENCE INTERVALS

Since the unbiased estimate and the MLE of a variance component is not
necessarily positive, it is important to provide various interval estimates for
the variance component so that one can get clearer picture of the situation. As
Weerahandi (1995) argued, when the point estimate is too small or negative, it
is more informative to report con�dence intervals rather than point estimates.
If it is necessary to provide a point estimate, the 50% lower con�dence bound,
which could be treated as a median unbiased estimate, could be reported as
a point estimate.
Consider the problem of constructing con�dence intervals for a variance

component �2a following the canonical form given by (5.1). The classical
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approach does not provide con�dence intervals based on exact probability
statements and so there are many articles including those of Satterthwaite
(1946) and Samaranayake and Bain (1988) providing approximate con�dence
intervals for such variance components. There is no such inference problem in
generalized inference. We can derive generalized con�dence intervals using a
generalized pivotal quantity or they can be deduced from generalized p-values
given in the previous section. In fact, the generalized test variable T de�ne by
(5.33) itself could be used to obtain a generalized pivotal. A more convenient
generalized pivotal that reduces to the variance component at the observed
values of the statistics is

R =
1

A
f(�2 + A�2a)

sa
Sa
� �2 sb

SB
g

=
1

A
fsa
V
� sb
W
g:

Hence, the generalized con�dence intervals for �2a can be obtained by writing
various probability statements about R or they can be deduced from the gen-
eralized p-value given by (5.34). By the former approach a 100
% generalized
lower con�dence bound �20 for �

2
a is found such that

Pr(R � �20) = Pr(
sa
V
� sb
W
� A�20)

= Pr(V � sa
A�20 + sb=W

)

= E

�
Ga(

sa
A�20 + sb=W

)

�
= 
: (5.37)

Similarly, if �21 and �
2
2 are chosen such that

E

�
Ga(

sa
A�21 + sb=W

)

�
=
1 + 


2
(5.38)

and

E

�
Ga(

sa
A�22 + sb=W

)

�
=
1� 

2

; (5.39)

then [�21, �
2
2] is an equal-tail 100
% generalized con�dence interval for �2.

The generalized interval can be computed conveniently using the XPro soft-
ware package. For certain values of sa and sb; one may not be able to �nd a
positive con�dence bound to satisfy equation (5.38). In such situations, other
con�dence statements with low coe¢ cients and asymmetric con�dence inter-
vals are considered more informative. By invoking the method of conditional
inference, Weerahandi (1995) described how to �nd positive con�dence limits
in all situations.

Example 4.5. Analysis of energy consumption (continued)

Consider again the problem of making inferences about the variance due to
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the refrigerator load with the data set in Table 4.1. Recall that with the data
in Table 4.1 we had sa = 2:099, sb = 1:997 , and A = 9. The upper 95%
generalized con�dence bound for �2L is 2.162. It can also be seen that the 95%
lower con�dence bound become negative suggesting that an exact con�dence
statement with a large coe¢ cient is not possible with the observed data unless
the probability statement is conditional. A 50% generalized con�dence inter-
val based on an exact probability statement is [0.0034, 0.3165]. Moreover, the
50% con�dence bound used as a point estimate for the variance component
is 0.088. These statements provide us with a better sense of the magnitude
of the variance component as opposed to reporting the unbiased estimate of
0.061.

5.7 FUNCTIONS OF VARIANCE COMPONENTS

The purpose of this section is to present a class of applications of variance
components, in which the generalized approach to solving underlying infer-
ence problems is very convenient and appealing. Here the problem is to make
inferences about various sums and ratios of variance components. Although
various other functions of variance components could also be tackled by the
generalized approach, we con�ne our attention to the sums and ratios since
they arise most often in practical applications. The reader is referred to
Burdick and Graybill (1992) for various such functions and for approximate
solutions for the problem of making inferences about such functions. Here
we do not consider problems involving functions of both means and variance
components of mixed models as arised, for instance, in applications of bioe-
quivelence testing. For generalized inference in such applications the reader
is referred to Peterson (2000) and McNally, Ijer, and Mathew (2003).
An important class of applications in this context arise in measurement

systems. Of particular interest is the so-called gauge repeatability and repro-
ducibility R & R studies. The reader is referred to Montgomery and Runger
(1993a, 1993b) for a discussion of gauge R & R studies dealing with designed
experiments. Tian and Cappelleri (2004) discuss another class of applica-
tions involving the problem of testing the reliability of expert evaluations and
judgements.
The data models used for gauge R & R studies are mixed models with

certain number of variance components. These variance components, individ-
ually, as well as sums, as ratios, and as ratios of sums, characterize the quality
of a measurement system. Montgomery and Runger (1993a, 1993b) and Bur-
dick (1994) stress the practical importance of using con�dence intervals in
this context since the point estimates by themselves can be misleading. Bur-
dick and Larsen (1997) demonstrated the problems with the ANOVA-based
con�dence intervals. In particular, as they pointed out, the actual coverage of
quantities of interest by such intervals in repeated sampling can be well below
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the intended level. They also provide good alternative solutions based on in-
tricate distributional approximations. The size performance of the con�dence
intervals they proposed and the generalized intervals provided by Hamada and
Weerahandi (2000) are substantially better than ML/REML-based methods,
which su¤er from very serious size problems even in applications involving a
single variance component, as seen in Chapter 3.
A major drawback of classical methods of �nding good con�dence intervals

for functions of variance components, including those reported by Burdick and
Graybill (1992), is that there is no single approach to deriving solutions and
there is no general formula that can yield solutions to a wide class of prob-
lems. For example, di¤erent sums of variance components in a single model
require di¤erent methods to obtain such approximate solutions and they can-
not be deduced from a single formula. As we will see later in this chapter,
the generalized approach provide general solutions to classes of problems in
this context. Therefore, even a practitioner who is looking for a reasonable
approximate solution with no regard to whether or not the solution is based
on exact probability statements can bene�t from the generalized procedures
provided in this section. The main objective of this section is to provide a
general approach to obtaining generalized tests and con�dence intervals for
sums of variance components and ratios of variance components, regardless of
the composition of such functions.

5.7.1 Variance functions in the two-way model

To better describe the nature of the underlying problem, applications, and the
nature of the solutions provided by the generalized approach, �rst consider
the two-way random e¤ects model that we studied above:

yijk = �+ �i + �j + 
ij + �ijk; (5.40)

i = 1; : : : ; I; j = 1; : : : ; J ; k = 1; : : : ;K

where �i � N(0; �2�), �j � N(0; �2�), 
ij � N(0; �2
); and �ijk � N(0; �2�);
being the random e¤ects of the model, are all random variables. As usual in
the case of the basic two-way layouts, �i, �j , 
ij ; and �ijk are assumed to be
independently distributed.
In the previous sections, we addressed the problem of making inferences

on individual variance components such as con�dence intervals on the main
e¤ect �2�. The purpose of this section is to provide solutions to the problem
of making inferences about sums and ratios of the variance components such
as �2�+�2� and �2�=(�2a+�2�+�2
+�2�). Before we undertake this task,
let us consider a class of applications of special interest in which one needs
to deal with various sums and ratios of variance components. Montgomery
(1991) and Montgomery and Runger (1993a) described a class of important
and interesting applications in the area of assessing measurement systems. In
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this class of applications, an experiment known as a gauge R & R study is
performed. As applied to the case of ideal setting of this class, p parts from a
population of parts made by a certain process are randomly chosen. Then, it
involves choosing o operators at random from a population of operators and
having each operator measure each part n times. The parts are randomly
presented to the operators so that the operators do not know which part is
being measured.
In terms of the terminology used in the literature in this context, and yet

keeping some of the above terminology in variance components as well, the
data from such a study can be analyzed based on the variance components
model:

yijk = �+Oi + Pj +OPij + �ijk; (5.41)

i = 1; : : : ; p; j = 1; : : : ; o; k = 1; : : : ; n;

where Oi � N(0; �2�), Pj � N(0; �2�), OPij � N(0; �2
); and �ijk �
N(0; �2�) are independent. The parameters of the model are the variance
components �2�, �2� , �2
 and �2�. Using the terminology in this class of
applications, let �2repeatability = �2� and �2process = �2�. There are many
quantities of interest that become important in various aspects of assessing a
measurement system. Some of the important sums in various applications are

�2reproducibility = �2� + �
2

 ;

�2gauge = �2reproducibility + �
2
repeatability;

measurement system variability, and

�2total = �
2
process + �

2
gauge;

the total variability.
Some ratios of interest widely addressed in the literature are

�2gauge
�2total

;
�2repeatability
�2total

;
�2reproducibility

�2total
;

�2gauge
�2process

;
�2repeatability
�2process

;
�2reproducibility
�2process

;

and
�2repeatability
�2gauge

:

Hamada and Weerahandi (2000) discussed various speci�c inference prob-
lems involving some of these quantities. For example, according to the Au-
tomotive Industry Action Group standards, the ratio �2gauge

�2process
should be less

than 0.2 in order for system to be considered adequate. Tsai (1988) reported
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an application in which 5:15�gauge
tolerance range should be less than 0.1. In some appli-

cations, a measurement system�s variation is also measured by 6�gauge, which
covers 99.73% of the measurement system variation. According to Mont-
gomery (1991), the parameter 6�gauge

tolerance range should be less than 0.1 for a
measurement system to be adequate.

5.7.2 The general problem

The problems involving functions of variance components arise in various
mixed models involving higher-way layouts including the nested designs that
we discussed above. Here we consider only those problems that can be ex-
pressed in the canonical form and concentrate only on sums and ratios of
variance components. Suppose there are N variance components, say �21, �

2
2,

: : : ; �2N , in a certain model and let s1, s2, : : : ; sN be the observed sums of
squares that can provide adequate information to enable all inferences con-
cerning the variance components. The random variables and the degrees of
freedom corresponding to these sums of squares are denoted as S1, S2, : : : ;
SNand d1; d2; : : : ;dN , respectively.
As in the above two-way ANOVA, in the canonical form, the distributions

of the sums of squares are related to the chi-squared random variables

Y1 = S1=�1� �2d1
Y2 = S2=�2� �2d2

...

YN = SN=�N� �2dN ; (5.42)

where �1, �2, ..., �N , are the expected mean sum of squares that arise in the
ANOVA. As can be seen from model (5.41), these are certain linear functions
of the variance components, but are not necessarily the functions that we are
interested in. Let

� =

0BBB@
�21
�22
...
�2N

1CCCA
be the vector of variance components and let

� =

0BBB@
�1
�2
...
�N

1CCCA
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be the vector of equations formed by expected mean sums of squares. The
linear functions that relates former to the latter can be expressed as

� = A� (5.43)

where A is an N � N matrix. For example, in the two-way random e¤ects
model (5.41),

A =

0BB@
JK 0 K 1
0 IK K 1
0 0 K 1
0 0 0 1

1CCA
is an easily invertible triangular matrix. We assume that A is invertible, as is
the case in typical problems. Then, we can express � in terms � of as

� = A�1� (5.44)

In the above example, the matrix A�1 is also a triangular matrix:

A�1 =

0BB@
J�1K�1 0 �J�1K�1 0
0 I�1K�1 �I�1K�1 0
0 0 K�1 �K�1

0 0 0 1

1CCA (5.45)

5.7.3 Inference on linear functions of variance components

Hamada and Weerahandi (2000) considered the problem of making inferences
of a linear combination of variance components of the two-way random e¤ects
model. More generally, consider the problem of making inferences concerning
a certain linear combination of variance components of the above general
model, say

� = c
0
� (5.46)

where c is an N � 1 vector. For example, in the Gauge R & R study, the c
vectors appearing in the table below are all important.

Table 5.7 The c vectors for the R & R study

quantity c
0

�2repeatability (0,0,0,1)
�2reproducibility (0,1,1,0)
�2gauge (0,1,1,1)
�2process (1,0,0,0)
�2total (1,1,1,1)
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Using (5.44), the parameter of interest � can be expressed as

� = k
0
�; (5.47)

where
k
0
= c

0
A�1 (5.48)

is a vector of constants with no unknown parameters. Continuing to illustrate
with the two-way random e¤ects model, the k particular vector in that case
is

k =

0BB@
c1J

�1K�1

c2I
�1K�1

K�1(�c1J�1 � c2I�1 + c3)
K�1(�c3 + c4)

1CCA (5.49)

Now consider, in particular, the problem of testing of hypotheses of the
form

H0 : � � �� (5.50)

where is �� a speci�ed constant. Since the generalized con�dence intervals can
be deduced from generalized p-values, let us consider the problem of deriving
the latter so that we can address the former in a later section of this chapter.
To construct a generalized procedure for testing this hypothesis, consider the
potential extreme region

C =
�
Sjk

0
�(S; s) � �

�
= (SjW (S; s;k) � �) ; (5.51)

where W (S; s) = k
0
�(S; s) is the potential test variable, S = (S1, S2, : : : ;

SN ) and s is the observed value of S, and �(S; s) is de�ned as

�(S; s) =

0BBB@
�1s1=S1
�2s2=S2
...
�NsN=SN

1CCCA : (5.52)

When S takes on its observed value s, it follows from (5.47) and (5.52) that
W = k

0
� = �; and hence the observed s falls on the boundary of the subset

of the sample space de�ned by (5.51). Moreover, using (5.42) and (5.48) W
can be expressed as

W = c
0
A�1

0BBB@
s1=Y1
s2=Y2
...
sN=YN

1CCCA (5.53)

=
k1s1
Y1

+
k2s2
Y2

� � �+ kNsN
YN

; (5.54)
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where Y quantities are independent chi-squared random variables de�ned in
(5.42) and k�s are the components of k vector de�ned in (5.48). Hence, the
probability of Y is free of unknown parameters and Pr(C) is an increasing
function of �. Therefore, the generalized p-value for testing (5.50) can be
computed as

p = max
H0

Pr(C)

= FW (��); (5.55)

where FW is the cdf of the distribution of W .
Since W is a linear combination of independent chi-squared random vari-

ables, this probability can be evaluated by exact numerical integration. As in
the generalized p-value applications in ANOVA and mixed models, it is com-
puted more easily by Monte Carlo integration. In that approach, the p-value
is evaluated by simulating the Y random vector a large number of times, say
100,000, and then calculating the proportion of times thatW (Y; s; c) variable
is less than or equal to ��.
As before, the p-value given by (5.55) can also be expressed as an integral

with respect to chi-squared random variables, or more preferably in terms
of fewer number of beta random variables leading to well behaved exact nu-
merical integrations. In the former representation, the generalized p-value is
expressed as

p = Pr(
k1s1
Y1

+
k2s2
Y2

+ � � �+ kNsN
YN

� ��)

= E

�
I

�
�� �

k1s1
Y1

+
k2s2
Y2

+ � � �+ kNsN
YN

��
; (5.56)

where I(x)is an indicator variable, which takes on the values 1 or 0 depending
on x is positive or not and the expectation is taken with respect to the chi-
squared random variables. Clearly, the p-value can also be computed using
the formula (cf. Appendix A.1)

p = 1� EfF�2d1+d2+���+dN�
1

��
(

k1s1
B1B2 � � �BN�1

+
k2s2

(1�B1)B2 � � �BN�1
+ � � �+ kNsN

(1�BN�1)

�
g;

(5.57)

where the expectation is taken with respect to the beta random variables

B1 =
Y1

Y1 + Y2
�Beta(d1

2
;
d2
2
)

B2 =
Y1 + Y2

Y1 + Y2 + Y3
�Beta(d1 + d2

2
;
d3
2
); � � � ;

BN�1 =
Y1 + Y2 + � � �+ YN�1
Y1 + Y2 + � � �+ YN

�Beta(d1 + d2 + � � �+ dN�1
2

;
dN
2
);
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and F�2d1+d2+���+dN
is the cdf of the chi-squared distribution with d1 + d2 +

� � � + dN degrees of freedom. It should be noted that if some of the k�s are
zero, then the p-value could be expressed in terms of a lesser number of beta
random variables corresponding to the non-zero k�s.

5.7.4 Testing reproducibility

To illustrate the use of foregoing formulas in speci�c applications, consider
the problem of testing the reproducibility in the Gauge R & R study of the
form H0 : � = �

2
reproducibility = �

2
� + �

2

 � ��. In this application

� =

0BB@
�2�
�2�
�2

�2�

1CCA
so that c = (0; 1; 1; 0) and

� =

0BB@
�1
�2
�3
�4

1CCA =

0BB@
on�2� + n�

2

 + �

2
�

pn�2� + n�
2

 + �

2
�

n�2
 + �
2
�

�2�

1CCA

=

0BB@
on 0 n 1
0 pn n 1
0 0 n 1
0 0 0 1

1CCA
0BB@
�2�
�2�
�2

�2�

1CCA
= A�

are the expected mean sums of squares.. By directly solving the linear equa-
tions, or using the inverse of A given by (5.45), for the sake of further illus-
tration of the notations, we can express � in terms of � as

� =

0BB@
(�1 � �3)=on
(�2 � �3)=pn
(�3 � �4)=n
�4

1CCA
and hence

�2reproducibility = (�2 � �3)=pn+ (�3 � �4)=n = k
0
�;

where k
0
=
�
0 1=pn 1=n(1� 1=p) �1=n

�
. This means that in this ap-

plication the test variable W (S; s) = k
0
�(S; s) becomes

W =
so
npY2

+
1

n
(1� 1

p
)
sop
Y3

� se
nY4

;
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and the p-value can be computed by exact numerical integration

p = 1� E
�
F�

�
1

��
(

so
pnB1B2

+
1

n
(1� 1

p
)

sop
(1�B1)B2

� sN
n(1�B2)

��
;

(5.58)
where F� is the cdf of the chi-squared distribution with o � 1 + (o � 1)(p �
1) + op(n� 1) degrees of freedom, and the expectation is taken with respect
to the beta random variables

B1 =
Y2

Y2 + Y3
�Beta(o� 1

2
;
(o� 1)(p� 1)

2
);

B2 =
Y2 + Y3

Y2 + Y3 + Y4
�Beta(o� 1 + (o� 1)(p� 1)

2
;
op(n� 1)

2
):

5.7.5 Comparing variance components

As another illustration consider the problem of comparing variance compo-
nents addressed by Zhou and Mathew (1994) to compare a new tube against
a control tube used for �ring ammunition from tanks. In their application
the response variable was the miss distance and the tube-to-tube variance
due to the new tube is compared with the control tube. They considered
two independent balanced mixed models with variance components �2x and
�2y, among other variance components. It is of interest to compare the two
variance components on the basis of the statistics Sx, Sy, SG, and SH with
distributions:

Y1 =
SG
�2g

� �2g ; Y2 =
SH
�2h

� �2h ;

Y3 =
Sx

�2g + M�2x
� �2x ; and Y4 =

Sy
�2h + N�2y

� �2y ;

where �2g and �
2 are nuisance parameters, M and N are some known positive

constants. The problem is to test hypotheses of the form

H0 : �
2
x � ��2y versus H1 : �2x > ��2y ; (5.59)

where � is a constant that is speci�ed prior to testing the hypothesis. For
the case � = 1; Zhou and Mathew (1994) described how unbiased tests can
be obtained in this kind of situation. More generally, tests of (5.59) could be
deduced from the above general results. In this application the parameter of
interest is

� = �2x � ��2y

=
�3 � �1
M

� ��4 � �2
N

:
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This means that in this application the test variable W (S; s) = k
0
�(S; s)

becomes

W = � sG
MY1

+ �
sH
NY2

+
sx
MY3

� � sy
NY4

and thus the generalized p-value for testing hypotheses is obtained as

p = Pr(W � 0)

= Pr(�M
sH
Y2
+N

sx
Y3
� N sG

Y1
+ �M

sy
Y4
): (5.60)

The p-value could also be computed using the formula

p = Pr

�
�M

sH
(1�B3)

+N
sx

B1B2B3
� N sG

(1�B2)B3
+ �M

sy
(1�B1)B2B3

�
;

(5.61)
which involve only 3 variables of integration, namely the Beta variables

B1 � Beta(
x

2
;
y

2
); B2 � Beta(

x + y

2
;
g

2
);

and

B3 � Beta(
x + y + g

2
;
h

2
);

which are independently distributed.

Example 4.6. Comparing measurements from two labs.

Two labs A and B test whether weight of a certain packaged food conform to
a certain standard. Table below shows a set of data appropriate for testing
the consistency of the labs. The illustrative data shown in the table represent
3 weight measurements taken by 7 operators randomly chosen from each of
the two labs.

Table 5.8 Weight measurements by lab and operator

Operator Lab A Operator Lab B

A1 15.63 16.38 16.64 B1 15.65 15.60 15.84
A2 14.87 15.08 15.01 B2 15.82 16.02 15.46
A3 15.68 15.17 15.59 B3 15.69 15.71 15.21
A4 15.87 16.02 15.99 B4 15.73 15.56 15.47
A5 15.75 15.82 15.99 B5 15.45 15.23 15.39
A6 15.69 15.82 16.24 B6 16.03 15.67 15.78
A7 14.68 15.14 15.13 B7 15.48 15.91 16.12
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Assuming a one-way random e¤ects model for data from each program, let
�A and �B be the two grand means of the weights of the product and �2A
and �2B be the variances of random e¤ects due to operators from lab A and
B, respectively. Let �2 and �2 be the error variances of the two models.
In this kind of applications, the problems of comparing the means and the
variances are both important. The former can be accomplished by procedures
discussed in Chapter 2 and is left as an exercise (see Exercise 4.15). Consider
the null hypothesis H0 : �2A � �2B that the among operator variability of
the measurements at Lab A is no larger than that of Lab B. The ANOVA
tables computed using data from Table 4.8 for the two labs are shown below.

ANOVA for lab A measurements.

Source DF SS MS E(MS)

Operators 6 4.319 0.720 �2 + 3�2A
Error 14 1.068 0.076 �2

Total 20 5.387

ANOVA for lab B measurements

Source DF SS MS E(MS)

Operators 6 0.553 0.092 �2 + 3�2B
Error 14 0.695 0.050 �2

Total 20 1.248

Based on the quantities in the two ANOVA tables, we can test the desired
hypothesis using the generalized p-value given by Formula (5.60). The p-value
is computed as

p = Pr

�
sA
Y2
+
sx
Y3
� sG
Y1
+
sy
Y4

�
= Pr

�
0:695

Y2
+
4:319

Y3
� 1:068

Y1
+
0:553

Y4

�
;

= 0:017,

where the probability is computed with respect to the chi-squared random
variables

Y1 =
SAE

�2
� �214 ; Y2 =

SBE
�2

� �214

and

Y3 =
SAO

�2 + 3�2A
� �26 ; and Y4 =

SBO
�2 + 3�2B

� �26 :
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Hence, we have su¢ cient evidence to reject the null hypothesis and conclude
that the measurements taken at Lab A has a higher variation than that of
Lab B.

5.7.6 Inference on ratios of linear functions of variance components

Hamada and Weerahandi (2000) also considered the problem of making in-
ferences of speci�c ratios of linear combinations of variance components in a
two-way random e¤ects model. More generally, consider the problem of mak-
ing inferences concerning a certain linear combination of variance components
of the general model in canonical form, say

� =
c
0

1�

c
0
2�
; (5.62)

where c1and c2 are vectors of known constants derived from the ratio of
interest. Hamada and Weerahandi (2000) gave the values of these vectors for
many quantities that are important in Gauge R & R studies. The quantities
that they reported along with corresponding c1and c2 vectors are shown in
Table 4.9.

Table 5.9 The a and b vectors for the ratios

quantity c1 c2

�2gauge=�
2
total (0,1,1,1) (1,1,1,1)

�2repeatability=�
2
total (0,0,0,1) (1,1,1,1)

�2reproducibility=�
2
total (0,1,1,0) (1,1,1,1)

�2gauge=�
2
process (0,1,1,1) (1,0,0,0)

�2repeatability=�
2
process (0,0,0,1) (1,0,0,0)

�2reproducibility=�
2
process (0,1,1,0) (1,0,0,0)

�2repeatability=�
2
gauge (0,0,0,1) (0,1,1,1)

Using equation (5.47), the parameter of interest can also be expressed in
terms of � as

� =
k
0
�

l0�
; (5.63)

where k
0
= c

0

1A
�1and l

0
= c

0

2A
�1. Since the generalized con�dence inter-

vals can be deduced from generalized con�dence intervals, �rst consider the
problem of testing of hypotheses of the form

H0 : � � ��; (5.64)

where is �� a speci�ed constant. The problem of generalized con�dence inter-
vals for linear combinations of variance components and their ratios will be
jointly addressed in the next section.
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To construct a generalized procedure for testing this hypothesis, in view of
(5.51), consider now a potential extreme region of the form

C =

 
Sjk

0
�(S; s)

l0�(S; s)
� �
!

=

�
SjW (S; s;k)
W (S; s; l)

� �
�
: (5.65)

where �(S; s) is as de�ned by equation (5.52). The p-value given by this
extreme region can be expressed as

p = Pr

�
W (S; s;k)

W (S; s; l)
� ��

�
= Pr

 
k1s1
Y1

+ k2s2
Y2

� � �+ kNsN
YN

l1s1
Y1
+ l2s2

Y2
� � �+ lNsN

YN

� ��

!
: (5.66)

In typical applications, the denominator of (5.62) is a positive linear combi-
nations of variance components. In this case, equation (5.63) reduces to

H0 : � � 0;

where � = c
0

1� � ��c
0

2�, a special case of (5.50). Then, the computation of
p-value can be greatly simpli�ed as

p = Pr

�
m1s1
Y1

+
m2s2
Y2

+ � � �+ mNsN
YN

� 0
�
; (5.67)

where mi = ki � li��, i = 1; � � � ; N .
This p-value can be evaluated by Monte Carlo integration by simulating Y

random vector a large number of times, say 100,000, and then calculating the
proportion of times the inequality in (5.67) is satis�ed. This p-value can also
be evaluated by exact numerical integration in terms of chi-squared random
variables using the form (5.56) or in terms of beta random variables using
(5.57). Actually, the exact numerical integration of (5.67) can be further
simpli�ed when we know the sign of mi of variables.

5.7.7 Illustration

To illustrate the application of (5.66), consider problems of testing the re-
peatability and reproducibility in the Gauge R & R study. Consider, in par-
ticular hypotheses of the form

H01 :
�2repeatability
�2total

� �� (5.68)
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where �� is a speci�ed known quantity. It follows from formula (5.49) that

�2repeatability =
�
0 0 0 1

�
�;

�2reproducibility =
�
0 1=pn 1=n(1� 1=p) �1=n

�
�;

�2total =
�
1=on 1=pn 1=n(1� 1=o� 1=p) 1� 1=n

�
�:

In testing the hypothesis (5.68), since �2total is a positive quantity, equation
(5.66) reduces to

p = Pr

 
se
Y4

sp
onY1

+ so
pnY2

+
sop(1�1=p�1=o)

nY3
+ se(1�1=n)

Y4

� ��

!

= Pr
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Y4
� ��
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pnY2

+
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nY3

+ se(1�1=n)
Y4

!
� 0
!

= Pr

�
se
Y4
� ��

�
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pnY2

+
sop(1� 1=p� 1=o)

nY3
+
se(1� 1=n)

Y4

�
� ��sp
onY1

�
= Pr

�
se
Y4
(1=�� � 1 + 1=n) �

sp
onY1

+
so
pnY2

+
sop(1� 1=p� 1=o)

nY3

�
= Pr

 
P (m4se

�
m1sp
Y1

+
m2so
Y2

+
m3sop
Y3

��1
�Y4

!
; (5.69)

wherem1 = 1=on,m2 = 1=pn,m3 =(1�1=p�1=o)=n, andm4 = 1=���1+1=n
are all positive constants with practical values of p; o; and ��, which is a ratio.
Since Y4 is a chi-squared random variable with d4 = op(n � 1) degrees of
freedom, we can express (5.69) as

p = 1�
Z Z

F�2
op(n�1)

 
m4se

�
m1sp
Y1

+
m2so
Y2

+
m3sop
Y3

��1!
� fY1(Y1)fY2(Y2)fY3(Y3)dY1dY2dY3; (5.70)

where the integration is taken with respect to the random variables, Y1, Y2,
Y3 with chi-squared distributions

Y1 � �2d1 ;
Y2 � �2d2 ;
Y3 � �2d3 ; (5.71)

where d1 = p�1, d2 = o�1 and d3 = (o�1)(p�1). To obtain the numerically
more stable integral representation of (5.70) involving beta random variables,



FUNCTIONS OF VARIANCE COMPONENTS 147

as before, de�ne jointly independent random variables,

B1 =
Y1

Y1 + Y2
�Beta(d1

2
;
d2
2
)

B2 =
Y1 + Y2

Y1 + Y2 + Y3
�Beta(d1 + d2

2
;
d3
2
)

B3 =
Y1 + Y2 + Y3

Y1 + Y2 + Y3 + Y4
�Beta(d1 + d2 + d3

2
;
d4
2
)

V = Y1 + Y2 + Y3 + Y4� �2ds ; (5.72)

where ds = d1 + d2 + d3 + d4. Let B�1 = (1�B1) and B�2 = (1�B2). It is
now evident that the p-value can be expressed as

p = Pr

�
m4se
Y4

�m1sp
Y1

+
m2so
Y2

+
m3sop
Y3

�
= Pr

�
m4se
Y4

� 1
V

�
m1sp
B1B2B3

+
m2so

B�1B2B3
+
m3sop
B�2B3

��
= 1� E

�
FFds;d4

�
m4sed4
ds

(
m1sp
B1B2B3

+
m2so

B�1B2B3
+
m3sop
B�2B3

)

��
: (5.73)

As another illustration, consider the problem of testing the hypothesis

H02 :
�2reproducibility

�2total
� �� (5.74)

To illustrate the direct application of (5.67), �rst of all note that the hypoth-
esis of interest can be rewritten as

H02 : �
2
diff � 0; (5.75)

where �2diff = �
2
reproducibility

� ���2total. This parameter can be expressed
as

�2diff =
�
0 1=pn 1=n(1� 1=p) �1=n

�
�

� ��
�
1=on 1=pn 1=n(1� 1=o� 1=p) 1� 1=n

�
�

=
�

���
on

���
pn

(1�1=p)���
n + ��

on ��� �
���
n

�
�;

where ��� = (1� ��). Then, it follows from (5.67) that

p = Pr

�
�m1sp

Y1
+
m2so
Y2

+
m3sop
Y3

�m4se
Y4

� 0
�

= Pr

�
m2so
Y2

+
m3sop
Y3

�m1sp
Y1

+
m4se
Y4

�
; (5.76)

where m1 = 1=on, m2 = (1=�� � 1) =pn, m3 = (1� 1=p)(1=�� � 1)=n+ 1=on;
and m4 = 1 + (1=�� � 1)=n. The p-value could be easily computed by Monte
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Carlo integration. As in previous cases, the probability can also be evaluated
by numerical integration with respect to beta random variables, by careful
choice of variables to keep the inequality valid:

p = Pr

�
�m1sp
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+
m2so
Y2

+
m3sop
Y3

�m4se
Y4

�
= Pr

�
1
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�
� m1sp
B1B2B3
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m2so

B�1B2B3
+
m3sop
B�2B3

�
�m4se
Y4

�
= 1� E

�
FFds;d4

�
m4sed4
ds

(
�m1sp
B1B2B3

+
m2so

B�1B2B3
+
m3sop
B�2B3

)

��
; (5.77)

where the beta random variables are as de�ned in (5.72).

5.7.8 Generalized con�dence intervals

Generalized con�dence intervals can be constructed using the above general-
ized p-values. To do this, let � be the linear combination or the ratio of such
linear combinations of interest. Recall that we were able to �nd test vari-
able T (Y; s) = W (S; s;k) or W (S; s;k; l) such that P (T (Y; s; ) � ��) is the
p-value for left-sided null hypotheses and similarly P (W (S; s;k) � ��) is the
p-value for right-sided null hypotheses. Therefore, we can obtain 100(1��)%
equal-tail generalized con�dence intervals of the form (�L; �U ) by solving
P (T (Y; s) � �L) = 1 � �=2 and P (T (Y; s) � �U ) = �=2. For example,
�L is the root of the equation P (T (Y; s) � �L)� (1� �=2) = 0.
A simple way to obtain con�dence intervals is by simulation. In the imple-

mentation of this method, we simulate the random vectorY N times, calculate
T (Y; s) for eachY, and then use the 100�=2th and 100(1��=2)th quantiles of
the simulated T values. For example, Y could be simulated 100,000 times re-
sulting in 100,00 T�s. Then the 95% con�dence intervals would be the 2500th
and 97500th values of the ordered T�s. Note that �L or �L may be negative
in which case they should be set to zero since variances are non-negative. An
alternative is to obtain con�dence intervals from the positive T�s. The distri-
butions of T describe the plausible values of � , that are consistent with the
s data. The (1-�)100% con�dence intervals then are the central (1-�)100%
of these distributions. As Hamada and Weerahandi (2000) pointed out, the
medians of the T distribution could be used to obtain a point estimate of � .

Example 4.5. Inference in measurement systems

To illustrate the utility of above procedures, consider the data reported in
Table 4.2 involving a measurement system with 20 parts, 3 operators, and
2 measurements taken from each combination. For this data set, (p; o; n) =
(20; 3; 2) and the vector of observed sums of squares is s = (sp; so; sop; se) =
(1185:43; 2:62; 27:05; 59:50); which is the third column of the ANOVA table.
A number of articles including those of Montgomery (1991) and Hamada

and Weerahandi (2000) considered various problems involving functions of
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variance components of the two-way ANOVA model (5.41). For example, to
answer the question of how good the measurement system is, they considered
the following hypothesis:

H02 :
�2gauge
�2total

� 0:1

It can be deduced from (5.67) that the generalized p-value for testing this
hypothesis is (see Exercise 4.12)

p = P (Y1 �
0:1sP
6

(
d1so
Y2

+
d2sop
Y3

+
d3se
Y4

)
�1
); (5.78)

where d1 = (1���)=np = 0:0225, d2 = (1=n)(��=o+(1���)(1�1=p)) = 0:4442
and d3 = (1� ��)(n� 1) = 0:9. We can conveniently evaluate the p-value by
�rst generating a large number random numbers from Y1 � �219 ; Y2 � �

2
2; Y3 �

�238; and Y4 � �2119 , say 100,000 from each, and then calculating the proportion
of times that the inequality in (5.78) is satis�ed. The p-value obtained in this
manner is 0.67, suggesting that the data provides no support to reject the null
hypothesis. It can also be shown that the generalized con�dence interval for
the parameter � = �2gauge=�

2
total

is [0.04,0.19]. This con�dence interval also
leads to the same conclusion. Hamada and Weerahandi (2000) computed the
95% generalized con�dence intervals by simulating 100,000 random numbers.
They are presented in the table below along with their point estimates. The
table also provides classical con�dence intervals when available; for many
quantities classical intervals are not available and are left blank. Note that
the generalized con�dence intervals are wider than those of the ANOVA-based
con�dence intervals especially for �gauge. This is a result of overcoming the
undercoverage problem of ANOVA-based con�dence intervals.

Con�dence intervals for quantities in R & R studies

Generalized Classical
Inference ANOVA

Quantity Estimate C.I. Estimate C.I.

�2repeatability 1.00 (0.72, 1.48) 0.88 (0.68, 1.19)
�2reproducibility 0.12 (.004, 3.78) 0.011 (0�, 1.28)
�2gauge 0.94 (0.70, 2.18) 0.89 (0.69, 1.19)
�2process 10.65 (5.86, 21.98)
�2gauge
�2total

0.08 (0.04, 0.19)
�2repeatability

�2total
0.09 (0.04, 0.16)

�2reproducibility
�2total

0.01 (0.003, 0.25)
�2gauge
�2process

0.09 (0.04, 0.24)
�2repeatability

�2process
0.09 (0.04, 0.19)

�2reproducibility
�2process

0.01 (0.0003, 0.37)



150 HIGHER-WAY MIXED MODELS

Exercises

5.1 Consider the two-way random e¤ects model

Yijk = �+ �i + �j + 
ij + �ijk;

i = 1; : : : ; I; j = 1; : : : ; J ; k = 1; : : : ;K:

Assuming that

�i � N(0; �2�); �j � N(0; �2�);

ij � N(0; �2
); and �ijk � N(0; �2�);

show that
E(S�) = (I � 1)(JK�2� +K�2
 + �2�);

where S� = JK
IP
i=1

(Y i: � Y )2.

5.2 Consider again the two-way random e¤ects model in Exercise 4.1. Show
that

S�
JK�2� +K�

2

 + �

2
�

� �2I�1:

5.3 Consider the two-way random e¤ects model. Find the distribution of the
grand mean Y if there are no �xed e¤ects in the model. Establish procedures
for testing point null hypotheses concerning the mean �. Also establish the
form of lower con�dence bounds for �.

5.4 Repeat Exercise 4.3 if � is a �xed e¤ect and � and 
 are random e¤ects.

5.5 Consider the following random e¤ects model that arise in a certain
hierarchical classi�cation:

Yijk = � + �i + �ij + �ijk;

i = 1; : : : ; I; j = 1; : : : ; J ; k = 1; : : : ;K;

where the random error terms �i, �ij , and �ijk are all independently and
normally distributed with zero means and certain variances. Discuss whether
or not the variance components have the canonical form. Establish procedures
for testing and constructing con�dence intervals for the variance components.

5.6 Consider the mixed model

Yijk = �i + 
ij + �ijk;

i = 1; : : : ; I; j = 1; : : : ; J ; k = 1; : : : ;K;

where �i; i = 1; : : : ; I are I �xed e¤ects, 
ij � N(0; �2
), and �ijk are normally
and independently distributed error terms. Discuss whether or not the vari-
ance component �2
 has the canonical form. Establish procedures for making
inferences about the parameters �i�s and the variance component �

2

 .
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5.7 Consider the data set given in Table 4.2 involving a measurement sys-
tem. Test each of the following hypotheses:

(a) H0 : �2repeatability < 2� �2gauge,
(b) H0 : �2gauge=�2reproducibility > 2:5.

5.8 Consider again he data in Table 4.2. Construct 95% con�dence intervals
for each of the following quantities:

(a) �1 =
�2repeatability

�2gauge
,

(b) �2 =
�2gauge

�2reproducibility
.

5.9 Consider a problem of hypothesis involving �3 = �1+�2 in the previous
problem. Using the generalized approach, derive the generalized p-value for
testing the hypothesis. Construct the form of con�dence intervals for �3.
Apply your formula in constructing a 95% con�dence interval for �3 with
data from Table 4.2.

5.10 Consider the two-way random e¤ects model (5.41) and suppose �2gauge
is the parameters of interest in a certain application.

(a) Express �2gauge in terms of �
2
�, �2� , �2
 ; and �2�.

(b) Express �2gauge in terms of the vector �.
(c) Find generalized p-values for testing left-sided hypotheses and right-sided
hypotheses concerning the parameter.
(d) Find the equal-tail 95 % generalized con�dence interval for �2gauge.

5.11 Consider the two-way random e¤ects model (5.41) and suppose �2total
is the parameter of interest in a certain application.

(a) Express �2total in terms of the vector �
(b) Find the generalized p-value for testing right-sided hypotheses concerning
the parameter.
(c) Find the equal-tail 95% generalized con�dence interval for �2total.
(d) Find the one-sided 95% generalized con�dence intervals for �2total.

5.12 Suppose that in a certain application the parameter of interest in above
model is the ratio

� =
�2gauge
�2total

:

(a) Find the generalized p-value for testing the hypothesis

H0 :� � ��:

(b) Deduce the right-sided 99% generalized con�dence intervals for �.

5.13 Consider the general model in canonical form involving N chi-squared
random variables.
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(a) Express the parameter � = �21 + �22+ � � � + �2M , in terms of �, where
M < N:
(b) Find the generalized p-value for testing the hypothesis H0 : � � ��.
(c) Find the generalized p-value for testing the hypothesis

H0 :
�2i
�

(d) Find the generalized p-value for testing the hypothesis

H0 :
�

�21 + �22 + � � �+ �2N
.

5.14 Consider the random e¤ects model described in Exercise 9.6. Let
�21; �

2
2, and �23 be the variance components corresponding to "i, "ij , and

"ijk.

(a) Establish procedures for making inference concerning linear combinations
of the form c1�

2
1 + c2�

2
2 + c3�

2
3, where c1; c2;and c3 are positive constants.

(b) Establish procedures for making inference concerning ratios of linear com-
binations of the form

� =
c1�

2
1 + c2�

2
2 + c3�

2
3

d1�21 + d2�22 + d3�23
;

where (c1; c2; c3) and (d1; d2; d3) are both vectors of positive constants.
(c) Construct the equal-tail 95% con�dence interval for �2� based on the chi-
squared distribution given by (3.50).
(d) Construct the left-sided 95% con�dence interval for �2�.
(e) Test the null hypothesis, H0 : �2� � 7.
(f) Test the null hypothesis, H0 : �2
 � 1.

5.15 Weerahandi (1995) considered the data set shown below to compare
the productivity of some factory workers under two musical programs.

Productivity under two musical programs

Program X

Worker A B C D E F G H
Mean 93.2 98.1 89.6 88.4 96.2 95.0 99.6 97.9
Variance 23.4 27.6 18.6 22.1 15.4 26.2 33.1 29.8

Program Y

Worker I J K L M N O P
Mean 90.3 85.1 99.4 98.4 86.2 82.5 103.9 96.7
Variance 32.4 26.3 16.8 23.7 18.4 25.6 34.1 28.3
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Assuming a one-way random model for the data from each program, let �x
and �y be the two grand means, and let �

2
x and �

2
y be the variances of random

e¤ects due to workers, under the programs X and Y , respectively.

(a) Construct 90% con�dence intervals for each of the variance components.
(b) Construct a 95% con�dence interval for �x� �y.
(c) Test the null hypothesis H0 : �2x � 0:4�2y:

5.16 Consider the data given in Table 4.8 on the measurements taken by
two labs. Assuming a one-way random e¤ects model for the data from each
lab, test the hypothesis that there is no di¤erence between the mean weights
of the packaged food as measured by the two labs. Also construct a 95%
con�dence interval for the di¤erence in the two means.


